平 成 2 5 年 度

環境水質

平成 26 年 10 月

神戸市環境局

はじめに

神戸市では、昭和 40 年代、工場や人口が集中している市街地を中心に、河川や海域の水質汚濁がすすみ、公害問題が深刻化しました。これに対し、昭和 42 年より公共用水域の監視を開始するとともに、市内の主要企業と公害防止協定を締結し、総量規制の考え方を導入するなど、法律以上に厳しい規制を行ってきました。さらに、「神戸市民の環境をまもる条例(昭和 47 年公布、平成 6 年全面改定)」の制定、総量削減計画の推進、下水道整備等の生活排水対策の推進など、さまざまな水環境保全施策に取り組んできました。

この取り組みの結果、神戸の河川の水質は大きく改善され、近年は良好な水質を維持しています。

一方、神戸の海域は、大阪湾奥部に位置し、大阪湾の水理構造や内部生産などの影響を強く受けることから、流域の汚濁負荷量削減等の対策の効果が出にくく、その改善が遅れています。

また、「生物多様性の確保」という観点からも、水辺は生物が生息する空間として重要であり、健全な水環境の保全が求められています。

このような水環境を取り巻く状況の変化を踏まえ、神戸市では、水質測定計画に基づく公共用水域や地下水の常時監視をはじめ、底質、水生生物等各種の調査を継続的に実施しています。これらの調査を通して水環境に係る基本情報を把握することにより、人の健康・安全の確保を基本とし、水環境が育む様々な恩恵を市民の皆様が享受でき、また多種多様な生きものの生息基盤となる「清らかでうるおいのある水環境」の確保に努めています。

この冊子は、平成25年度に実施した水環境に係る調査結果をとりまとめたものです。 神戸市の水環境の現状をご理解いただき、市民の皆様が神戸の水環境に親しみ、接する 契機となり、また活動の際の情報源として活用いただけることを期待しています。

平成 26 年 10 月

目 次

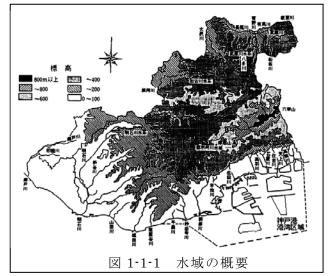
1	神尸巾の水 境境																
1.	市域の概況																1
2.	水環境に係る監視・調査の概要																3
3.	平成 25 年度の水質の概況																4
II 7	k質測定計画に基づく調査																
1.	公共用水域の常時監視(通年調査)			•	•	•	•					•	•		•	•	5
2.	植物プランクトン調査	•	•	•	•	•	•			•	•	•	•		•	•	44
3.	地下水調査	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	58
ш 4	ダイオキシン類調査	•	•			•											63
IV ‡	寺別調査																
1.	底質調査												•				67
2.	水生生物調査				•		•					•	•			•	70
3.	海水浴場水質調査														•		78
4.	六甲山渓流調査	•	•	•	•		•			•		•	•		•	•	82
5.	ゴルフ場で使用される農薬の影響調	査		•	•		•					•	•		•	•	86
6.	化学物質環境実態調査	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	91
(資料:	編)																
V 1	公共用水域経年変化等																
1.	測定項目、測定方法及び定量下限値				•		•					•	•			•	93
2.	水質経年変化一覧			•	•	•	•	•	•	•	•	•	•	•	•	•	96
VI 💈	参考資料																
1.	水質汚濁に係る環境基準について																111
2.	地下水の水質汚濁に係る環境基準に	つ	L١	て													123
3.																	124
4.	ダイオキシン類に係る環境基準につ	۲١.	T														126
5.	公共用水域等における農薬の水質評	価	指	針	に	つ	L١	て				•	•		•	•	127

Ⅰ 神戸市の水環境

I 神戸市の水環境

1. 市域の概況

(1) 地形


神戸市は東西約 36km、南北約 30km、総面積約 553km²であり、六甲山系(最高峰 931m)により大きく南北に二分されている。

六甲山系南側の海岸に沿った地域には、明治時代以降、急速に人口の集中が進み、現在では神戸市全人口約154万人のうちおよそ6割が居住する既成市街地が広がっている。

一方、六甲山系の北側は山地や丘陵地が波 状に展開し、西側は低くなだらかな台地が広 がっている。これらの地域では都市近郊農業 が営まれるとともに大規模な住宅団地や産業 団地が整備されている。

(2) 河川

本市域を流れる河川は、①都市河川水域 (表六甲河川群)、②北神水域(武庫川水系・加古川水系)、③西神水域(明石川水系・ 瀬戸川水系)に区分することができる。

① 都市河川水域 (流域面積:約 172km²)

六甲山系南側の既成市街地域は、山麓部に住宅、中央部に商業地域、沿岸部に工業地域が広がるという三層構造をなしており、これらの地域を、二十数本の二級河川、 準用河川が六甲山から大阪湾に向かって流れている。

都市河川水域の河川の多くは、勾配が大きく、通常の河川水量は少ないが、ひとたび豪雨があれば短時間に多量の雨水が流出し、これまでしばしば大きな災害を発生させてきたため、治水面から河川護岸が整備されている。

② 北神水域 (流域面積:約 198km²)

六甲山系北側には比較的河川規模が大きい「武庫川水系」と「加古川水系」とがあり、両者を併せて「北神水域」と区分している。

ア. 武庫川水系 (流域面積:約88km²)

武庫川は篠山市に源を発し、三田市、神戸市北東部、宝塚市を経て、尼崎市と西宮市の市境を流下し大阪湾に注いでいる。

武庫川本流が本市域を流下する距離は約6~7kmと短いが、六甲山の北斜面の一部や丘陵地域から流れ出る支流の有馬川、有野川、長尾川及び八多川などは比較的流域面積が広い。この水系に位置する千苅水源池は、本市の貴重な自己水源である。

イ. 加古川水系 (流域面積:約110km²)

加古川は丹波市に源を発し、播磨平野東部を流れて播磨灘に注いでいる。

本市域には支流の淡河川、志染川及び草谷川が流れており、3河川とも一級河川に指定されている。これらの河川は、六甲山系の北斜面の一部や標高約 600m の帝釈山系・丹生山系、その周辺の丘陵地の水を集めて、三木市、稲美町、加古川市などを経由して、加古川本流に合流している。

③ 西神水域 (流域面積:約 156km²)

六甲山系西北側には「明石川水系」と「瀬戸川水系」があり、両者を併せて「西神水域」と区分している。

ア. 明石川水系 (流域面積:約 131km²)

明石川は北区山田町に源を発し、支川の櫨谷川、天上川、伊川などと合流後、明石市内を流れて播磨灘に注いでいる。

河川周辺の多くは河岸段丘に開けた農業地帯で、河川水は農業用水として利用されるほか、明石市の上水源として取水されている。

イ. 瀬戸川水系 (流域面積:約 25km²)

瀬戸川(一部神戸市域では通称「鰈川」)は西区神出町、岩岡町に源を発し、支川の印籠川、清水川と明石市内で合流後、播磨灘に注いでいる。河川延長は他水系と比較して短い。この地域には利水できる河川が少ないこともあり、古くから多くのため池が造られて農業用水に利用されている。

(3) 湖沼

本市の北東端には、羽東川、波豆川を水源とする貯水量約1,160万 m³の「千苅水源池」があり、本市の上水源として利用されている。千苅水源池の上流域は三田市や宝塚市で、 集水域の多くは農地や山林であるが、近年、都市化が進んでいる。

また、本市と三木市との市境には、志染川を水源とする貯水量約1,886万m³の「衝原湖」があり、本市の上水源として、また農業用水源として利用されている。

(4) 海域

既成市街地の南側は大阪湾が広がり、本市域における海岸線の総延長は約130 kmに達する。このうち東灘区から須磨区(境川)までの区域は、水面面積約9,203haの神戸港港湾区域として位置づけられている。

神戸港には、埠頭施設など港湾関連施設並びに人工の海上都市であるポートアイランドと六甲アイランドが整備されている。さらに、臨海部には大規模な臨海公園やプロムナードの整備も行われている。平成7年1月の阪神・淡路大震災により護岸や港湾施設は壊滅的な被害を受けたが、その後の懸命の努力により、現在はほぼ震災前の状態に復興が遂げられている。また、平成18年2月には神戸空港が開港した。

一方、須磨から舞子にかけての海岸線は半自然海岸となっており、特に、「須磨海岸」 は阪神間に残る数少ない海水浴場として、長年、市民に親しまれている。

また、明石海峡大橋に隣接した舞子海岸では、海岸防災と海浜の復元を目的とするコースタル・コミュニティ・ゾーン整備事業が進められ、平成 10 年度より「アジュール舞子」が海水浴場として多くの市民に利用されている。

須磨区から垂水区にかけての海域は、のり養殖や漁場として古くより利用されている。

2. 水環境に係る監視・調査の概要

神戸市で平成25年度に実施した水環境に係る監視・調査は、表1-2-1に示すとおりである。

(1) 水質測定計画に基づく調査 (詳細はⅡ章に記載)

神戸市では、水質汚濁防止法第 15 条に基づき公共用水域及び地下水の水質の汚濁の状況について常時監視を実施している。公共用水域の常時監視は同法第 16 条に基づき定められた水質測定計画により、昭和 46 年から計画的に行われている(公共用水域の測定は昭和 42 年より開始)。

また、地下水についても、監視が義務付けられた平成元年より常時監視を行っている。

(2) ダイオキシン類調査(詳細はⅢ章に記載)

ダイオキシン類対策特別措置法第 26 条に基づき、水質・底質・土壌について常時監視を行っている。

(3) 特別調査 (詳細はⅣ章に記載)

法に基づく調査に加え、広く水環境の状況を把握しその保全を図るため、特別調査として、底質調査、水生生物調査、海水浴場調査、六甲山渓流調査、公共用水域の農薬調査及びゴルフ場農薬の水質調査、化学物質環境実態調査を実施している。

表 1-2-1 水質等の監視・調査 (平成 25 年度)

調査区分	調査名	調査地点	備考
水質測定計画に 基づく調査 (Ⅱ章参照)	公共用水域常時監視	河川 45 地点* 湖沼 2 地点 海域 22 地点	地点数には独自調 査地点 (河川 2、 湖沼 1) を含む
	植物プランクトン調査	海域 12 地点	
	地下水常時監視	概況調査9 地点継続監視調査4 地点	
ダイオキシン類太 ダイオキシン類訓	け策特別措置法に基づく 関査(Ⅲ章参照)	水質 27 地点(公共用水域23 地点, 地下水4 地点) 底質 23 地点 土壌 8 地点(公園等)	
特別調査 (IV章参照)	底質調査	河川 10 地点 (北神河川水域) 海域 7 地点 (A類型水域)	
	水生生物調査	水生生物調査:海域4地点 底生生物調査:海域7地点	
	海水浴場調査	須磨海水浴場 3地点 アジュール舞子海水浴場1地点	
	六甲山渓流調査	六甲山 渓流 19 地点	
	ゴルフ場で使用される 農薬の影響調査	ゴルフ場 春季 20 ゴルフ場 24 地点 秋季 7 ゴルフ場 8 地点 公共用水域 春季 5 地点、秋季 1 地点	
	化学物質実態調査	河川 2 地点 海域 1 地点	

^{*}ローリング方式(地点)のため H25 年度は調査しなかった 7 地点を含む。

3. 平成25年度の水質の概況

平成25年度の公共用水域の調査結果をみると、人の健康に関する項目(27項目)については、38地点(河川24地点、湖沼1地点、海域13地点)で調査を行った結果、有馬川のふっ素及び福田川の砒素が自然的要因により環境基準値を超過した(平成24年度は、有馬川の1地点でふっ素が環境基準値を超過)。その他の河川、湖沼、海域においては全ての地点で環境基準を達成した。

生活環境の保全に関する項目については、環境基準の類型指定がなされている河川(明石川、志染川、伊川、福田川)の、代表的な水質指標であるBODについてみると、いずれの河川も、平成24度に引き続き環境基準を達成した。その他の河川についても全般的に良好な水質で推移している。

湖沼では、千苅水源池がA類型の環境基準点に指定されているが、代表的な水質指標である CODについてみると、平成25年度は、環境基準を非達成であった(平成24年度も非達成)。 湖沼の代表的な富栄養化の水質指標である全燐についてみると、千苅水源池では、Ⅱ類型に指 定されており、平成25年度は、環境基準、暫定目標とも非達成であった。(平成24年度も、環 境基準、暫定目標とも非達成)。

海域では、代表的な水質指標であるCODについてみると、兵庫運河(C類型)の環境基準点である材木橋では、平成25年度は平成24年度に引き続き環境基準を達成した。神戸海域(大阪湾)の水質について、水域類型別にCODの状況をみると、C類型では全地点で環境基準値を下回ったが、B類型では全地点で環境基準値を上回った。A類型では7地点中1地点で環境基準値を下回った。富栄養化の水質指標である全窒素・全燐について、類型毎の平均値をみると、全窒素、全燐とも全類型で環境基準値を下回った。水生生物の保全に係る水質指標である全亜鉛・ノニルフェノール・LASについては、測定した全地点で環境基準値を下回った。

地下水については、「地下水モニタリングの手引き(平成20年8月環境省)」に基づき調査を 実施している。「概況調査」は定点方式により各区1定点の9定点で実施しており、3年で定点 を変更している。「汚染井戸周辺地区調査」は概況調査で環境基準値を超過した場合に実施する。 「継続監視調査」は過去の概況調査で環境基準値を超過した地点、項目について実施している。 概況調査は、9地点でカドミウム等28項目について実施した。その結果、全ての地点、全て の項目において環境基準を達成していた。3地点については要監視項目であるクロロホルム等

汚染井戸周辺地区調査は、概況調査の結果全ての地点、全ての項目において環境基準を達成 していたため、実施しなかった。

24項目についても調査し、うち1地点でマンガンが指針値を超過した。

継続監視調査では、4地点のうち3地点で環境基準値を超過した。内訳は東灘区の地点で砒素及びふっ素が、垂水区の地点でテトラクロロエチレンが、北区の地点で砒素、ふっ素及びほう素が環境基準値を超過した。

ダイオキシン類については、公共用水域の水質、底質、地下水、土壌の監視を行っているが、 平成25年度は平成24年度に引き続き、測定した全地点で環境基準を達成した。

その他の調査結果についても、平成25年度は特に大きく変動した項目はなく、水環境の状況は安定した状態であるといえる。

今後とも各種調査を継続して実施し、神戸市域の水環境の状況を的確に把握するとともに、 各種施策・計画の基礎となるデータの集積に努めていく。 Ⅱ 水質測定計画に基づく調査

Ⅱ 水質測定計画に基づく調査

1. 公共用水域の常時監視 (通年調査)

(1) 調査の概要 (平成 25 年度)

① 調査期間、頻度

平成25年4月~平成26年3月にかけて、原則として月1回、各地点1日につき1回、採水し分析を行った。

② 測定地点

水質測定計画に基づき、河川 43 地点、湖沼 1 地点、海域 22 地点の計 66 地点を常時監視 地点としている。このうち都市河川の比較的小規模な河川については、平成 20 年度よりローリング方式(地点)を導入し隔年調査としている。平成 25 年度は河川 36 地点、湖沼 1 地 点、海域 22 地点の計 59 地点で調査を実施した。

また、これらの測定地点の他に、河川2地点、湖沼1地点を独自調査地点(補助地点)に 位置づけ、調査を行った。

③ 採水方法

水質調査方法(昭和 46 年 9 月、環水管第 30 号)に準拠して行った。 採取水深は次のとおりである。

ア. 河 川

原則として流心において、水深の2割程度の深さで採水した。

イ.湖 沼

表層(水面下 0.5m)及び下層(水面下 10m)からそれぞれ採水した。

- ウ. 海 域
 - ・水深 5 m以浅の地点(1地点;兵庫運河・材木橋) 表層(海面下 0.5m)から採水した。
 - 水深5m以深の地点(21地点)

表層(海面下 0.5m)及び中層(海面下 2 m)からそれぞれ採水し、等量混合して分析した(表中層等量混合)。

なお、13地点では中下層(海面下6m)、底層(海底上1m)でも採水した。

4 分析方法

「日本工業規格 K0102」、「水質基準に関する省令の規定に基づき厚生労働大臣が定める方法 (平成 15 年 7 月厚生労働省告示 261 号)」、「水質汚濁に係る環境基準について (昭和 46 年 12 月、環境庁告示第 59 号)」、「海洋観測指針 (気象庁編)」、「水質汚濁に係る人の健康の保護に関する環境基準の測定方法及び要監視項目の測定方法について (平成 5 年 4 月、環水規第 121 号)」、「水質汚濁に係る環境基準についての一部を改正する件の施行等について (平成 15 年 11 月、環水企発第 031105001 号・環水管発第 031105001 号)」、「水質汚濁に係る人の健康の保護に関する環境基準等の施行等について (平成 16 年 3 月、環水企発第 040331003 号・環水土発第 040331005 号)」及び「水質汚濁に係る環境基準についての一部を改正する件の施行等について (平成 25 年 3 月、環水大水発第 1303272 号)」に基づいて実施した。

(2) 公共用水域測定地点及び環境基準の類型指定状況

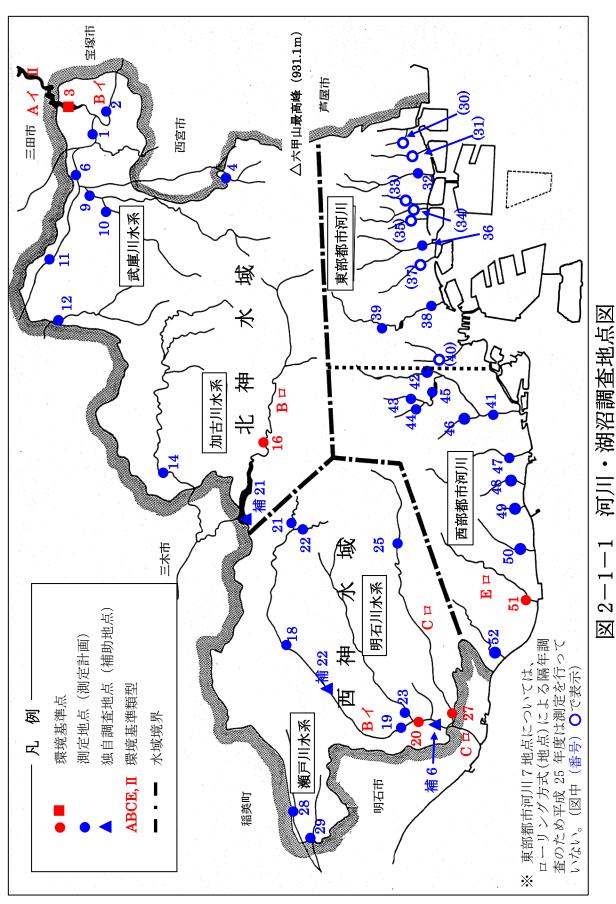
① 公共用水域測定地点(平成25年度)

(※太枠は環境基準点)

ア. 河川

水域名	水系名	地点 No.	河川名	測定地点名	緯度・経度 (世界測地系)	環境基準の 水域類型
		1	武庫川	亀治橋	北緯 34°52′1″ 東経 135°15′27″	В
	b	2	武庫川	大岩橋	北緯 34°51′45″ 東経 135°16′19″	В
	武庫	4	有馬川	長尾佐橋	北緯 34° 48′ 10″ 東経 135° 14′ 55″	
北	水系	6	有馬川	月見橋	北緯 34°52′18″ 東経 135°14′11″	
神		9	有野川	流末	北緯 34°52′4″ 東経 135°13′48″	
水		10	八多川	才谷橋	北緯 34°51′22″ 東経 135°13′16	
域		11	長尾川	大江橋	北緯 34° 52′ 24″ 東経 135° 12′ 2″	
	加	12	大沢川	万歳橋	北緯 34°52′13″ 東経 135°9′25″	
	加古川水	14	淡河川	万代橋	北緯 34° 48′ 42″ 東経 135° 5′ 22″	
	水系	16	志染川	坂本橋	北緯 34° 45′ 51″ 東経 135° 6′ 38″	В
		18	明石川	藤原橋	北緯 34°44′23″ 東経 135°0′34″	В
		19	明石川	玉津大橋	北緯 34° 40′ 38″ 東経 134° 59′ 0″	В
		20	明石川	上水源取水口	北緯 34°40′7″ 東経 134°59′9″	В
		21	木津川	流末	北緯 34°44′49″ 東経 135°4′21″	
西	明石	22	木見川	流末	北緯 34°44′44″ 東経 135°4′19″	
神	川水系	23	櫨谷川	流末	北緯 34° 40′ 34″ 東経 134° 59′ 5″	
水		25	伊川	水道橋	北緯 34°41′53″ 東経 135°4′26″	С
域		27	伊川	二越橋	北緯 34°39′31″ 東経 134°59′25″	С
		補 6	明石川	旧水源	北緯 34° 39′ 40″ 東経 134° 59′ 2″	В
		補 22	明石川	西戸田	北緯 34° 43′ 2″ 東経 134° 59′ 28	В
	瀬	28	鰈川	西区岩岡町	北緯 34° 43′ 32″ 東経 134° 55′ 26″	
	水戸 系川	29	印籠川	西区岩岡町	北緯 34° 42′ 58″ 東経 134° 54′ 43″	

水域名	水系名	地点 No.	河川名	測定地点名	緯度・経度 (世界測地系)	環境基準の 水域類型
		30*	要玄寺川	琴田橋	北緯 34° 43′ 21″ 東経 135° 17′ 13″	
		31*	天上川	天上川橋	北緯 34° 42′ 58″ 東経 135° 16′ 42″	
		32	住吉川	住吉川橋	北緯 34° 42′ 43″ 東経 135° 16′ 8″	
	東	33*	天神川	辰巳下橋	北緯 34° 42′ 36″ 東経 135° 15′ 8″	
	部	34*	石屋川	石屋川橋	北緯 34° 42′ 35″ 東経 135° 15′ 5″	
	都	35*	高羽川	玉利橋	北緯 34° 42′ 35″ 東経 135° 14′ 44″	
	市河	36	都賀川	昌平橋	北緯 34° 42′ 19″ 東経 135° 13′ 58″	
	1 ¹	37*	西郷川	流末	北緯 34° 42′ 17″ 東経 135° 13′ 26″	
都	7.1	38	生田川	小野柄橋	北緯 34°41′44″ 東経 135°12′10″	
市		39	布引水源池	水源池上流	北緯 34° 42′ 52″ 東経 135° 11′ 15″	
河		40*	宇治川	山手幹線上流	北緯 34°41′13″ 東経 135°10′27″	
{HJ		41	新湊川	南所橋	北緯 34°39′56″ 東経 135°9′1″	
Ш		42 *	天王谷川	雪御所公園東	北緯 34°41′24″ 東経 135°9′57″	
水		43	烏原川	水源池上流	北緯 34°41′48″ 東経 135°8′59″	
1-45	西西	44	イヤガ谷川	水源池上流	北緯 34°41′36″ 東経 135°9′0″	
域	部	45	烏原水源池	取水塔前	北緯 34°41′28″ 東経 135°9′31″	
	都	46*	苅藻川	八雲橋	北緯 34° 40′ 20″ 東経 135° 8′ 46″	
	市	47	妙法寺川	若宮橋	北緯 34°38′54″ 東経 135°7′53″	
	河	48*	千森川	流末	北緯 34°38′34″ 東経 135°6′56″	
	Ш	49*	一の谷川	流末	北緯 34°38′31″ 東経 135°6′22″	
		50 *	塩屋谷川	流末	北緯 34°38′7″ 東経 135°4′56″	
		51	福田川	福田橋	北緯 34°38′2″ 東経 135°3′39″	Е
		52 *	山田川	山田橋	北緯 34° 38′ 33″ 東経 135° 1′ 39″	
		L			7, 3, <u>1</u>	I


^{※ *}はローリング方式(地点)による隔年調査(2年に1度測定)。網掛けは平成25年度は測定を行わなかった地点。

イ. 湖沼

水域	水系名	地点	湖沼名	測定地点名	緯度・経度	環境基準の	水域類型
名	ルが石	No.	1401111711	例是地点有	(世界測地系)	COD 等	全燐
北神	武庫川水系	3	千苅水源池	取水塔前	北緯 34°52′36″ 東経 135°16′11″	A	П
北神水域	加古川水系	補 21	衝 原 湖	取水塔前	北緯 34°46′23″ 東経 135°4′18″		

ウ. 海域

水 域 名	地点 No.	海域名	測定地点名	緯度・経度(世界測地系)	COD 等の 水域類型	T-N, T-P の 水域類型	水生生物 の保全に係る 水域類型
	5 6	第2工区南	六 甲 大 橋	北緯 34° 42′ 5″ 東経 135° 16′ 4″ 北緯 34° 41′ 36″			
	5 9	· 葺 · 合 · 港	摩 耶 大 橋	東経 135°13′1″			
	6 1	神戸港東	神戸大橋	北緯 34° 40′ 39″ 東経 135° 12′ 2″			
大阪湾(1)	6 5	六甲アイランド南	沖合 (3)	北緯 34° 40′ 12″ 東経 135° 17′ 26″	С	IV	
	7 6	第 4 工 区 南	沖合(1)	北緯 34° 41′ 40″ 東経 135° 18′ 26″		IV	
	7 9	ポートアイランド東	第6防波堤北	北緯 34° 40′ 42″ 東経 135° 14′ 45″		•	
	8 0	神戸港	中央	北緯 34°39′52″ 東経 135°11′40″			
兵庫 運河	6 4	兵 庫 運 河	材 木 橋	北緯 34°39′35″ 東経 135°9′59″	С		生物 A
	6 2	ポートアイランド南	沖合(1)	北緯 34° 38′ 38″ 東経 135° 14′ 44″			
	6 6	第一防波堤南	沖 合	北緯 34° 38′ 42″ 東経 135° 11′ 50″			
	6 7	苅 藻 南	神戸灯台南	北緯 34°38′52″ 東経 135°10′7″			
大阪湾(2)	6 8	苅 藻 島 南	沖 合	北緯 34°38′12″ 東経 135°9′50″	В	Ш	
	7 7	第 4 工 区 南	沖合 (2)	北緯 34° 39′ 20″ 東経 135° 18′ 21″			
	7 8	六甲アイランド南	観測塔	北緯 34° 38′ 51″ 東経 135° 16′ 36″			
	8 1	六甲アイランド南	沖合 (2)	北緯 34° 37′ 42″ 東経 135° 16′ 50″			
	7 0	須 磨 港	西防波堤	北緯 34°38′22″ 東経 135°7′55″			
大 阪 湾	7 1	須 磨 海 域	JR須磨駅前	北緯 34° 38′ 26″ 東経 135° 6′ 52″			生物 特A
(4)	7 2	須 磨 海 域	海釣公園	北緯 34°38′1″ 東経 135°6′23″			
	8 2	ポートアイランド南	沖合 (3)	北緯 34° 37′ 42″ 東経 135° 11′ 50″	А	П	生物 A
	7 4	垂 水 海 域	垂水漁港	北緯 34° 37′ 28″ 東経 135° 3′ 15″			
大阪湾(5)	7 5	舞子海域	舞 子 漁 港	北緯 34°38′12″ 東経 135°1′32″			生物 特A
	8 3	垂 水 海 域	沖 合	北緯 34° 36′ 36″ 東経 135° 5′ 32″			

2 - 1 - 1×

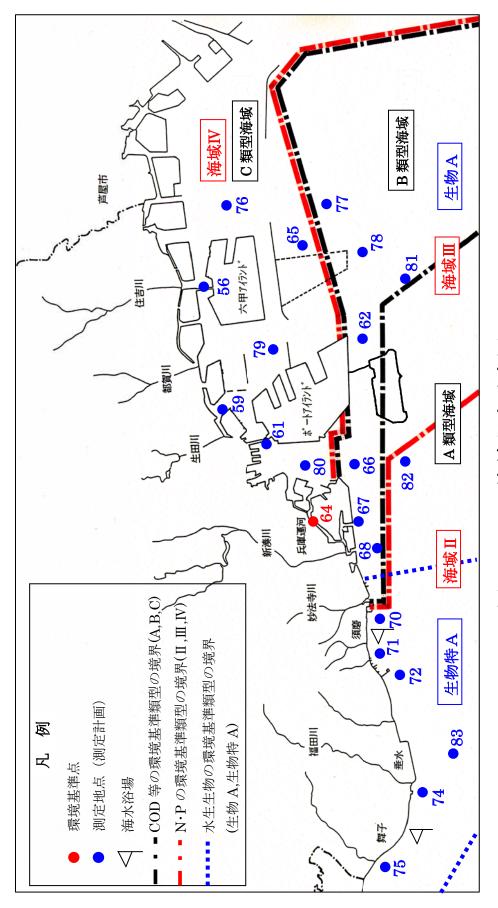


図 2-1-2 海域調査地点図

② 公共用水域の類型指定状況

表 2-1-1 神戸市域内における「生活環境の保全に関する環境基準」の水域類型指定状況

区分	水坑	或	水域の範囲	類型	
	武庫川中	7流	三田市大橋から仁川合流点まで	В	
	明石川	上流	伊川合流点より上流	В	
河川	97/11/11	下流	伊川合流点より下流	С	
1月7日	志染川		呑吐ダム上流端から上流の本流	В	
	伊川		明石川との合流点から上流の本流	С	
	福田川		福田川本流全域	Е	
湖沼	千苅水源	i 汕·i	千苅ダムのえん堤及びこれに接続	COD等	A
仰竹口	X11/1N/05	지만	する陸岸に囲まれた水域	全燐	П
	兵庫運河	J	新川運河を含む	COD等	С
				COD等	$A \sim C$
海域	大阪湾		図 2-1-3 の水域	全窒素・全燐	$II \sim IV$
	八败得			全亜鉛等の水生生物	生物特A
				の保全に係る項目	生物A

各類型の指定年月日、達成期間、基準値等の詳細は、第VI章に記載する。

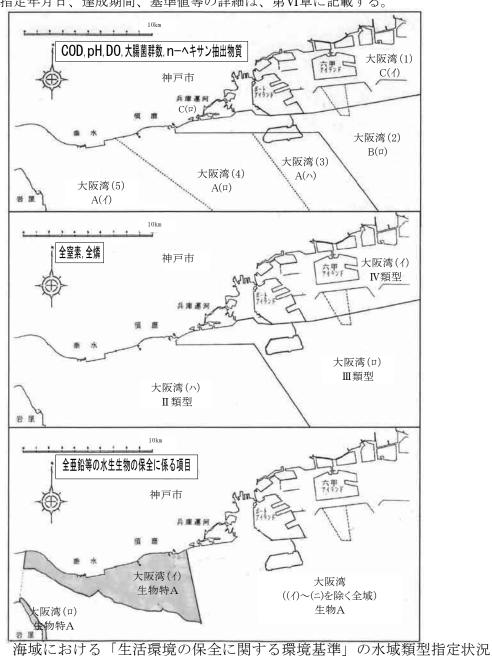


図 2-1-3

(3) 平成25年度水質測定計画

① 河川

				流				生	活	環境	項目	1															健	東項	目											
流域名	測定点 №.	水域名	地点名	量	Н		C O D			菌群数	分	素	燐	全亜鉛	ノニルフェノール	カドミウム	全シアン	鉛		素	銀	ル	В	ジクロロメタン	四塩化炭素 ロー・ファイン ロー・ファイン ローロエタン	ジクロロエチレ	シス 1,2-ジクロロエチレン	1, 1-トリクロロエタン	1, 1, 2- トリクロロエタン	トリクロロエチレン		1,3-ジクロロプロペン		シマジン	チオベンカルブ	ベンゼン	レン	酸性窒素及び亜硝酸性窒素	2	1,4-ジオキサン
 15		武庫川	亀冶橋	12	12	12	12	12	12	4		4	4	4	1	0	0	0	0	0	0		0	0	0 (1 0	0	0	0	0	0	0	0	0	0	0	0	4	0	0 0
武庫		武庫川 有馬川	大岩橋 長尾佐橋	12	12 4	12 4	12	12 4	12 4	4		4	4	4	1	2	2	2	2	2	2		2	2	2 2	2 2	1	2	2	2	2	2	2	2	2	2	2	4	4	2 2
川川		有馬川	月見橋	12	12	19	12	12	12	4	-	4	4	4	1	2	2	_	2	2	2	_	2	2	2 2	2 2	_	_	2	2	2	2	2	2	2	2	2	4		2 2
水		有野川	流末	4	4	4	4	4	4	4		4	4	4	1	4		4			4		4	4	2 2	2 د			4		4	4			4			4		4 4
系	_	八多川	才谷橋	4	4	4	4	4	4	4		4	4	4	1																							4	+	+
N/		長尾川	大江橋	4	4	4	4	4	4	4		4	4	4	1																							4	+	+
加		大沢川	万歳橋	4	4	4	4	4	4	4		4	4	4	1	1	1	1	1	1	1		1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	4	1	1 1
古		淡河川	万代橋	12	12	12	12	12	12	4		4	4	4	1	2	2	2	2	2	2		2	2	2 2	2 2	2	2	2	2	2	2	2	2	2	2	2	4	2	2 2
ЛÌ		志染川	坂本橋	12	12	12	12	12	12	12		4	4	4	1	2	2	2	2	2	2		2	2	2 2			2	2	2	2	2	2	2	2	2	2	4		2 2
		明石川	藤原橋	12	12	12	12	12	12	4		4	4	4	1																							4	丁	$\neg \neg$
		明石川	玉津大橋	12	12	12	12	12	12	4		4	4	4	1																							4	\neg	
明		明石川	上水源取水口	12	12	12	12	12	12	12		4	4	4	1	2	2	2	2	2	2		2	2	2 2	2 2	2	2	2	2	2	2	2	2	2	2	2	4	2	4 2
石		木津川	流末	4	4	4	4	4	4	4		4	4	4	1																							4	\neg	
JII	22	木見川	流末	4	4	4	4	4	4	4		4	4	4	1																							4		
水	23	櫨谷川	流末	4	4	4	4	4	4	4		4	4	4	1																							4		
系	25	伊川	水道橋	12	12	12	12	12	12	4		4	4	4	1																							4		
	27	伊川	二越橋	12	12	12	12	12	12	4		4	4	4	1	2	2	2	2	2	2		2	2	2 2	2 2	2	2	2	2	2	2	2	2	2	2	2	4	2	2 2
	補6	明石川	旧水源	12	12	12	12	12	12			12	4	4	1																							12		
		明石川	西戸田	4	4	4	4	4	4	4		4	4	4	1																							4		
瀬戸		鰈川	西区岩岡町	4	4	4	4	4	4	4		4	4	4	1	1	1	1	1	1	1		1	1	1 1	1		1	1	1	1	1	1	1	1	1	1	4	1	1 1
Ш		印篭川	西区岩岡町	4	4	4	4	4	4	4		4	4	4	1	1	1	1	1	1	1		1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	4	1	1 1
		要玄寺川	琴田橋																																					
	31	天上川	天上川橋																																					
東	32	住吉川	住吉川橋	12	12	12	12	12	12	4		4	4	4	1	2	2	2	2	2	2		2	2	2 2	2 2	2	2	2	2	2	2	2	2	2	2	2	4	2	2 2
部		天神川	辰巳下橋																																					\perp
都		石屋川	石屋川橋																																			_	_	
市		高羽川	玉利橋												_	_																						_	_	
闸	36	都賀川	昌平橋	12	12	12	12	12	12	4		4	4	4	1	2	2	2	2	2	2		2	2	2 2	2 2	2	2	2	2	2	2	2	2	2	2	2	4	2	2 2
Ш		西郷川 生田川	流末 小野柄橋	12	10	10	10	10	10	4	-	4	1	А	-1	-0	0	2	-0	0	0	-	2	0	2 2) 0	0	0	-0	2	2	0	0	0	0	0	2	1	2	2 2
			水源池上流	14	12			12	12	4		4 12	4	4	1	2	2	1	2	2	2		1	2	_	2 2	1	2	2	_	1	2	2	2	2	2		4		1 1
	39 40	布引貯水池 宇治川	山手幹線上流	1	12	12	12	12	12	12		14	12	1		1	1	1	1	1	1	-	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	12	1	1 1
		新湊川	南所橋	12	12	12	12	12	12	4		4	4	4	1	2	2	2	2	2	2		2	2	2 2	2 2	2	2	2	2	2	2	2	2	2	2	2	4	2	2 2
	42	天王谷川	雪御所公園東	14	4	4	4	4	4	4		4	4	4	1					4	4	+	4	4	4 4	2 ر	4		4	4	4	4	4	4	4	4	4	4	4	4 4
	43	鳥原川	水源池上流	1	19	12	12	12	12	12		12	12	4	1	4	4	4	4	4	4	-	1	4	4 /	1 4	4	4	4	4	4	4	4	4	4	4	4	12	4	4 4
西	44	イヤガ谷川	水源池上流	1	12	12	12	12	12	12		12	12	1		1	1	1	1	1	1	+	1	1	1 1	1 1		1	1	1	1	1	1	1	1	1		12	1	1 1
部	45	烏原水源池	取水塔前	_	24	24	24	24	24	24			24	8		8	8	8	8	8	8	_	2	8	8 8	-	_		8	8	8	8	8	8	8	8	8		8	8 8
都		苅藻川	八雲橋	4	4	4	4	4	4	4		4	4	4	1	- 5				-		7	-		5 (, 0			-						-			4		<u> </u>
市		妙法寺川	若宮橋	12	12	12	12	12	12	4		4	4	4	1	2	2	2	2	2	2	7	2	2	2 2	2 2	2	2	2	2	2	2	2	2	2	2	2	4	2	2 2
河	48	千森川	流末	4	4	4	4	4	4	4		4	4	4	1	1	1	1	1	1	1	+	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	4	_	1 1
Ыİ	49	一の谷川	流末	4	4	4	4	4	4	4		4	4	4	1	1	1	1	1	1	1		1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	4	1	1 1
1	50	塩屋谷川	流末	4	4	4	4	4	4	4		4	4	4	1	1	1	1	1	1	1		1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	4	1	1 1
		福田川	福田橋	12	12	12	_	12	12	4		4	4	4	1	2	2	2	2	2	2	7	2	2	2 2	2 2	2	2	2	2	2	2	2	2	2	2	2	4	2	2 2
1		山田川	山田橋	4	4				4			4	4	4	1	1	1		1	1	1	7	1	1	1 1				1	1	1	1	1	1	1	1	1	4		1 1
<u> </u>													±.σ					- お		_	_	· . L	ったー	_	丁車						_					_	_	てい		- 1 -

[※] Ma45鳥原水源池・取水塔前は、平成13年度から平成21年度まで工事のため貯水しておらず欠測であったが、工事終了に伴い平成22年度より測定を再開している。

② 湖沼

			1	流				生泪	· 搢 ·	竟項	Н			Т											健 F	表項	īВ											\neg
流域名	測定点 №	水域名	地点名	量	Р	B O D	C S O S	SI) 大	油分等	全全	全	<u>i</u> =	・ミウ	シアン	鉛	六価クロム	素) ;	アルキル水银	ンク	化炭素	2-ジク	1,1-ジクロロエチレン	シス1,2ジクロロエチレン	1, 1,	1, 1, 2- ト リ ク ロ	/ロロエチレン	テトラクロロエチレン	1, 3-ジクロロプロペン		シマジン	オン		酸	素	う素・ミスコ	1,4-ジオキサン
武庫	3	千苅水源	取水塔前(表層)		12	12	12 1	2 1	2 12	2	12 1	2 4	1	. 4	4	4	4	4	4		1 4	4 4	4	4	4	4	4	4	4	4	4	4	4	4	4 12	4	4	4
Щ			取水塔前(下層)		12	12	12 1	2 1	2 12	2	12 1	2 4	1	. 4	4	4	4	4	4		1 4	4 4	4	4	4	4	4	4	4	4	4	4	4	4	4 12	4	4	4
加古	補21	衝原湖	取水塔前(表層)		4	4	4	4	4 4	Į.	4	4 4	1																						4			
Ш			取水塔前(下層)		4	4	4	4	4 4	1	4	4 4	1 1																						4			

											要	監礼	見項	目													<u>۱</u>		特	殊項	目					その	の他	の項	目			
クロロホルム	2- シ ク ロ ロ	ジクロロベンゼン	ン	ダイアジノン	フェニトロチオン	イソプロチオラン	オキシン銅	クロロタロニル	プロピザミド	E P N	ジクロルボス	フェノブカルブ	イプロベンホス	クロルニトロフェン	トルエン	キシレン	フタル酸ジエチルヘキシル	ニッケル	モリブデン	アンチモン	塩化ビニルモノマー	エピクロロヒドリン	全マンガン	ウラン	エノー	ホルムアルデヒド	リハロメタン生成能	フェノール類	銅	溶解性鉄	溶解性マンガン	クロム	塩化物イオン	アンモニア性窒素	亜硝酸性窒素	硝酸性窒素	燐酸性りん	陰イオン界面活性剤	一般細菌	導電率 (電気伝導度)	濁度	A T U — B O D
																													1	1	1	1	4 4 4 4 4 4	4 4 4 4 4 4	4 4 4 4 4 4	4 4 4 4 4 4	4 4 4 4 4 4	4				
1 1		1 1		. 1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	12	1	1	1	1	1	4 4 4 4 4 4	4 4 4 4 4 4 4	4 4 4 4 4 4	4 4 4 4 4 4	4 4 4 4 4 4	4 4				
1 1		1 1	. 1	. 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			1	1	1	1	4 4 4 4 4 4 4	4 4 4 12 4 4	4 4 4 12 4 4	4 4 4 12 4 4	4 4 4 4 4	4				12
																													1	1	1		4	4	4	4						
1 1		1 1				1 2				1		1	1	1	1	1	1	1	1 2	1			1 2	1		1 2		1	1 1 4	1	1	1 1 4	4 12 4 4 12	4 12 4 4 12	4 4 4 12	4 4 4 12	4	4				
2 2		1 1				2		1	2	1	2	1	2	1	1	1	1	1	2	2	1	1	2	2	1	2		8	1 1 1 1 1 1	8 1 1 1 1 1	8 1 1 1 1 1 1	1 1 1 1	12 24 4 4 4 4 4 4	12 24 4 4 4 4 4 4	12 24 4 4 4 4 4 4	4 4	4 4 4 4 4 4		12 24			

東 歐	視項目	特殊項目	その他の項目
ク 1月 P- イメ フィスカーク プロピックロス 2-ソクロロタックロロック フェニトロチオラン カーローボン マー・アン・カーローボン フェー・アン・カーローボン マー・アン・カーローボール カー・アン・カー・アン・カー・アン・カー・アン・カー・アン・カー・アン・カー・アン・カー・アン・カー・アン・カー・アン・カー・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・	7 イクトキット 生 エピクロラン フェノール ボルムアルボルルエン カール エン カーロー ヒース カール デース カール エピクロロ ヒール デース カール エール デース カール デース カール デース カール デース カール アール デース カール アール デース カール エース カール	フェノール類 プェノール類	塩 本 工 工 工 工 工 工 工 工 工 工 工 工 工
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4 4 1	12 12 12 12 4 4 12
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4 4 1	12 12 12 12 4 4 12
		1 1 1 1 1	4 4 4 4 4
		1 1 1 1 1	4 4 4 4 4

③ 海域

					Ŀ		環		頁目	l														倭	康	項目	1									_		
類型	測定点 No.	地点名	Р	C O D	Ο	大腸菌群数	油分等	全窒素	全燐	全亜鉛	ノニルフェノール	L A S	ドミ	全シアン	鉛	六価クロム	砒素		アルキル水銀	P C B	ジクロロメタン	化炭素	シクロロエタ	ジクロロエチレン	シ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2- トリクロロエ	ロロエチレ	テトラクロロエチレン	1,3-ジクロロプロペン	チウラム	シマジン	チオベンカルブ	ベンゼン	セレン	酸	ふっ素	ほう素	1,4-ジオキサン
	56	第2工区南·六甲大橋	12	12	12	6		12	12	1	1		2	2	2	2	2	2		1	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	12			2
	59	葺合港·摩耶大橋	12	12	12	6	2	12	12	1	1		2	2	2	2	2	2		1	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	12			2
	61	神戸港東・神戸大橋	12	12	12	6		12	12	1	1		2	2	2	2	2	2		1	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	12			2
C 粔	64	兵庫運河·材木橋	12	12	12	6	2	12	12	1	1	1	2	2	2	2	2	2		1	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	12	1	1	2
類型	65	六甲アイラント・南・沖合(3)	12	36	36	6	2	36	36	1	1																								36			
	76	第4工区南·沖合(1)	12	36	36	6		36	36	1	1		2	2	2	2	2	2		1	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	36			2
	79	ポートアイランド東・第6防波堤北	12	36	36	6		36	36	1	1		2	2	2	2	2	2		1	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	36			2
	80	神戸港・中央	12	36	36	6		36	36	1	1	1	2	2	2	2	2	2		1	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	36			2
	62	ポートアイランド南・沖合(1)	12	36	36	6		36	36	1	1		2	2	2	2	2	2		1	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	36			2
	66	第1防波堤南·沖合	12	36	36	6		36	36	1	1																								36			
В	67	苅藻南·神戸灯台南	12	12	12	6	2	12	12	1	1		2	2	2	2	2	2		1	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	12			2
類	68	苅藻島南・沖合	12	36	36	6		36	36	1	1																								36			
型	77	第4工区南•沖合(2)	12	36	36	6		36	36	1	1																								36			
	78	六甲アイランド南・観測塔	12	36	36	6		36	36	1	1																								36			
	81	六甲アイラント・南・沖合(2)	12	36	36	6	2	36	36	1	1																								36			
	70	須磨港·西防波堤	12	12	12	6	2	12	12	1	1																								12			
	71	須磨海域・JR須磨駅前	12	12	12	6	2	12	12	1	1		2	2	2	2	2	2		1	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	12		L	2
A	72	須磨海域·海釣公園	12	36	36	6	2	36	36	1	1		2	2	2	2	2	2		1	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	36			2
類	74	垂水海域·垂水漁港	12	12	12	6	2	12	12	1	1	1	2	2	2	2	2	2		1	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	12			2
型	75	舞子海域·舞子漁港	12	12	12	6	2	12	12	1	1		2	2	2	2	2	2		1	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	12			2
	82	ポートアイラント・南・沖合(3)	12	36	36	6	2	36	36	1	1																								36			
	83	垂水海域·沖合	12	36	36	6	2	36	36	1	1																								36			

[※] 測定数36の項目は、3層(表中層・中下層・底層)で年12回測定を行った項目である。なお、溶解性CODは、年12回のうちの4回について、 5地点で表中層に加えて中下層及び底層での測定を行ったため、この地点での測定数は20となっている。

												要	監礼	見項	目																その	り他	の項	目			
クロロホルム	トン1.2ジクロロエチレン	1, 2-ジクロロプロパン	P-ジクロロベンゼン	イソキサチオン	ダイアジノン	フェニトロチオン	イソプロチオラン	オキシン銅	クロロタロニル	プロピザミド	E P N	ジクロルボス	フェノブカルブ	イプロベンホス	クロルニトロフェン	トルエン	キシレン	フタル酸ジエチルヘキシル	ニッケル	モリブデン	アンチモン	塩化ビニルモノマー	エピクロロヒドリン	全マンガン	ウラン	フェノール	ホルムアルデヒド	塩素量	アンモニア性窒素	亜硝酸性窒素	硝酸性窒素	燐酸性りん	溶解性COD ※	クロロフィル a	植物プランクトン	濁度	8 8
																												12	12	12	12	12	12	12	12	6	6
																												12	12	12	12	12					
																												12	12	12	12	12	12	12	12	6	6
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	12	12	12	12	12					6
																												36	36	36	36	36	12	12	12	6	6
																												36	36	36	36	36	20	12			
																												36	36	36	36	36	12	12	12	6	6
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	36	36	36	36	36	20	12			
																												36	36	36	36	36	12	12	12	6	6
																												36	36	36	36	36	12	12	12	6	6
																												12	12	12	12	12	12	12	12	6	6
																												36	36	36	36	36	12	12			
																												36	36	36	36	36	12	12			
																												36	36	36	36	36	12	12			
																												36	36	36	36	36	20	12	12	6	6
																												12	12	12	12	12					
																												12	12	12	12	12	12	12	12	6	6
																												36	36	36	36	36					
																												12	12	12	12	12	12	12	12	6	6
																												12	12	12	12	12					
																												36	36	36	36	36	20	12	12	6	6
																												36	36	36	36	36	20	12	12	6	6

(4) 水質汚濁に係る環境基準の達成状況 (平成 25 年度)

水質汚濁に係る環境基準には、全公共用水域に適用される「人の健康の保護に関する環境基準」と、類型指定された水域について適用される「生活環境の保全に関する環境基準」がある。平成25年度の環境基準達成状況は、以下のとおりである。なお、環境基準の詳細については、第VI章に記載する。

①「人の健康の保護に関する環境基準」の達成状況

38 地点(河川 24 地点、湖沼 1 地点、海域 13 地点)で人の健康の保護に関する項目(27 項目)の調査を行った結果、有馬川のふっ素及び福田川の砒素が自然的要因により環境基準値を超過して検出された。

- ふっ素: 有馬川·長尾佐橋 年平均値 1.0mg/L (環境基準値 0.8 前年度; 0.98)
- 砒素:福田川·福田橋 年平均值 0.011mg/L (環境基準値 0.01 前年度; 0.008)

②「生活環境の保全に関する環境基準」の達成状況

ア. 河川の環境基準達成状況

河川の環境基準点におけるBOD (生物化学的酸素要求量)等の環境基準の達成 状況を表 2-1-2 に示す。河川の有機汚濁の代表的指標であるBODをみると、環 境基準の水域類型指定がなされている4河川の環境基準点においては、平成24年 度に引き続き、環境基準を達成した。

表 2-1-2 河川の環境基準点における環境基準の達成状況 (平成 25 年度) 下段()内は平成 24 年度の値

				適	合率(%	,)		BOD		BOD
水域名	類型	環境基準点	На	BOD	SS	DO	大腸 菌 群数	75% 水質値 (mg/L)	BOD 環境基準値	達成状況
明石川	В	上水源取水口	75 (92)	92 (92)	92 (100)	100 (100)	58 (50)	2. 1 (2. 1)	3mg/L	(<u>(</u>)
志染川	В	坂本橋	83 (92)	100 (100)	100 (100)	100 (100)	92 (83)	1.3 (1.2)	以下	$\bigcirc (\bigcirc)$
伊川	С	二越橋	33 (0)	100 (92)	100 (100)	100 (100)		1.8 (1.9)	5mg/L 以下	(O)
福田川	Е	福田橋	0 (0)	100 (100)	100 (100)	100 (100)	_	1. 6 (1. 8)	10mg/L 以下	(O)

- ◆ 適合率(%)={(環境基準に適合している検体数)÷(全測定検体数)}×100
- ◆ 75%水質値とは、測定データ(総数 n 個)をその小さいものから順に並べて 0.75×n 番目の測定データをいい、環境基準の達成状況を評価する場合に用いる値。

イ. 湖沼の環境基準達成状況

湖沼の環境基準点である千苅水源池におけるCOD(化学的酸素要求量)等の環境基準の達成状況を表 2-1-3 に示す。湖沼の有機汚濁の代表的指標であるCODをみると、平成 25 年度は 75%水質値が 3.6mg/L で、環境基準を達成しなかった(24年度も非達成)。

表 2-1-3 湖沼の環境基準点における環境基準の達成状況 (平成 25 年度)

下段()内は平成24年度の値

			適合率	(%) (表層・下	層平均值	で評価)	COD		
水域名	類型	環 境 基準点	На	COD	SS	DO	大腸菌 群数	75% 水質値 (mg/L)	C O D 環境基準値	達成 状況
千苅水源池	A	取水塔前	100 (100)	58 (58)	92 (92)	50 (50)	67 (67)	3. 6 (3. 5)	3 mg/L 以下	\times (\times)

千苅水源池については、平成14年4月、全燐に関する環境基準のⅡ類型に指定され、平成27年度を目標とする暫定目標が設定されている。平成25年度は、環境基準、暫定目標とも達成しなかった(表2-1-4)。

表 2-1-4 湖沼の環境基準点における全燐に係る環境基準の達成状況 (平成 25 年度)

下段()内は平成24年度の値

水域名	類型	環境 基準点	年平均値(表層) (mg/L)	環境基準値 (mg/L)	環境基準 達成状況	暫定目標 (mg/L)	暫定目標 達成状況
千苅水源池	П	取水塔前	0. 023 (0. 023)	0.01 以下	× (×)	0.019	× (×)

ウ. 海域の環境基準達成状況

(\mathcal{T}) COD

環境基準点である兵庫運河・材木橋におけるCOD等の環境基準達成状況を表 2-1-5 に示す。海域の有機汚濁の代表的指標であるCODについてみると、平成 25 年度は 75%水質値が 3.5mg/L で環境基準を達成した (平成 24 年度も達成)。

表 2-1-5 海域の環境基準点における環境基準の達成状況(平成 25 年度)

下段()内は平成24年度の値

			適	合率 (%	,)	COD		
水域名	類型	環境基準点	На	COD	DO	75% 水質値 (mg/L)	COD 環境基準値	達成状況
兵庫運河	С	材 木 橋	92 (67)	100 (100)	100 (100)	3. 5 (3. 8)	8 mg/L 以下	(())

神戸海域(大阪湾)の調査地点について、CODの環境基準値と比較すると、 C類型では全地点で環境基準値を下回ったが、B類型では全地点で環境基準値を 上回った。A類型では7地点中1地点で環境基準値を下回った。(表 2-1-6)

表 2-1-6 神戸海域の類型別COD75%水質値と環境基準値との比較(平成 25 年度)

()内は平成24年度の値

類型	75%水質値の 類型平均値 (mg/L)	環境基準値 (mg/L)	環境基準値超過地点/測定地点
Α	2.9 (2.7)	2以下	6 / 7 (5 / 7)
В	4.7 (4.0)	3以下	7 / 7 (7 / 7)
С	5. 1 (4. 2)	8以下	0/7 (0/7)

(イ) 全窒素・全燐

全窒素及び全燐の環境基準と、平成25年度の神戸海域における類型毎の平均値との比較を表2-1-7に示す。類型別の平均値では、全窒素・全燐ともに、全類型で環境基準値を下回った。

※神戸海域を含む大阪湾については、平成7年2月に全窒素及び全燐に係る水 域類型の指定がなされた。

表 2-1-7 海域の類型別全窒素、全燐年平均値と環境基準値との比較(平成 25 年度) ()内は平成 24 年度の値

項目	類 型	類型平均値 (mg/L)	環境基準値 (mg/L)	適合状況
	Ⅱ類型	0.20 (0.25)	0.3以下	\bigcirc (\bigcirc)
全窒素	Ⅲ類型	0. 28 (0. 35)	0.6以下	\bigcirc (\bigcirc)
	IV類型	0.35 (0.41)	1以下	\bigcirc (\bigcirc)
	Ⅱ類型	0.026 (0.027)	0.03以下	\bigcirc (\bigcirc)
全 燐	Ⅲ類型	0.034 (0.033)	0.05 以下	\bigcirc (\bigcirc)
	IV類型	0.042 (0.041)	0.09以下	\bigcirc (\bigcirc)

◆評価方法:各測定地点の表層または表中層の年平均値を水域類型別に平均した値で評価。 Ⅲ、Ⅲ類型は神戸海域の7地点、Ⅳ類型は神戸海域及び兵庫運河・材木橋の8地点。

(ウ) 水生生物の保全に係る項目(全亜鉛・ノニルフェノール・LAS)

全亜鉛・ノニルフェノール・LAS (直鎖アルキルベンゼンスルホン酸及びその塩) の環境基準と、平成 25 年度の神戸海域における類型毎の平均値との比較を表 2-1-8 に示す。 3 項目とも、測定を行ったすべての地点で環境基準値を下回った。

※神戸海域を含む大阪湾については、平成25年6月に水生生物の保全に係る水 域類型の指定がなされた。

表 2-1-8 海域の類型別全窒素、全燐年平均値と環境基準値との比較(平成 25 年度)

項目	類型	類型別平均値 (mg/L)	環境基準値	環境基準値超過 地点/測定地点
全亜鉛	生物特A	0.001	0.01mg/L以下	0/6
土、业、如	生物A	0.003	0.02mg/L以下	0 / 16
ノニルフェノール	生物特A	< 0.00006	0.0007mg/L以下	0 / 6
	生物A	< 0.00006	0.001mg/L以下	0 / 16
LAS	生物特A	< 0.0006	0.006mg/L以下	0 / 1
LAS	生物A	< 0.0006	0.01mg/L以下	0 / 2

(5) 河川の水質状況

平成25年度の河川の水質(BOD75%水質値)を表2-1-9に示す。

表2-1-9 河川の水質 (BOD75%水質値:mg/L) の状況 (平成25年度)

		• •		
水域	No.	河川名	測定地点名	B0D75% 水質値
	1	武庫川	亀治橋	2. 0
	2	武庫川	大岩橋	2. 0
	4	有馬川	長尾佐橋	1.6
北	6	有馬川	月見橋	1.8
神	9	有野川	流末	1. 2
水	10	八多川	才谷橋	1.7
域	11	長尾川	大江橋	2. 1
	12	大沢川	万歳橋	1. 5
	14	淡河川	万代橋	1. 9
	16	志染川	坂本橋	1. 3
	18	明石川	藤原橋	2. 5
	19	明石川	玉津大橋	1.7
	20	明石川	上水源取水口	2. 1
	21	木津川	流末	0. 9
西	22	木見川	流末	1.1
神	23	櫨谷川	流末	1. 7
水	25	伊川	水道橋	2. 7
域	27	伊川	二越橋	1.8
	補6	明石川	旧水源	4. 2
	補22	明石川	西戸田	2. 5
	28	鰈川	西区岩岡町	1.4
	29	印籠川	西区岩岡町	2. 3

<i>-</i> 1		3/ L) V/1/1/1/L	(1/94==1/2)	
水 域	No.	河川名	測定地点名	B0D75% 水質値
東部	30	要玄寺川	琴田橋	-☆
	31	天上川	天上川橋	-☆
	32	住吉川	住吉川橋	0. 9
	33	天神川	辰巳下橋	-☆
	34	石屋川	石屋川橋	- ☆
都市	35	高羽川	玉利橋	- ☆
E河 川	36	都賀川	昌平橋	0.8
	37	西郷川	流末	-☆
	38	生田川	小野柄橋	1. 2
	39	布引水源池	水源池上流	<0.5
	40	宇治川	山手幹線上流	-☆
	41	新湊川	南所橋	1.8
	42	天王谷川	雪御所公園東	1.6
	43	烏原川	水源池上流	0. 5
西	44	イヤガ谷川	水源池上流	0. 5
四部都市河川	45	烏原水源池	取水塔前	1. 5
	46	苅藻川	八雲橋	1.4
	47	妙法寺川	若宮橋	1.5
	48	千森川	流末	4. 2
	49	一の谷川	流末	1. 9
	50	塩屋谷川	流末	2. 7
	51	福田川	福田橋	1.6
	52	山田川	山田橋	1.6

☆ 東部都市河川のうち小規模河川については、ローリング方式(地点)のため平成25年度は測定していない。

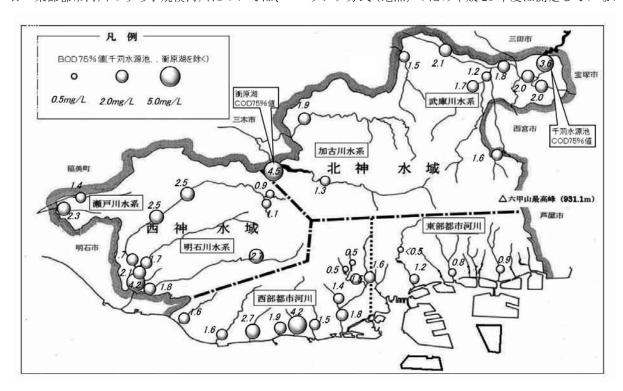


図 2-1-4 河川のBOD (75%水質値) の分布状況 (平成 25 年度)

神戸市の河川は、市街地を流れる都市河川水域と、北神水域(武庫川水系・加古川水系)、 西神水域(明石川水系・瀬戸川水系)に区分することができる。

水域毎のBOD (75%水質値) の経年変化を図 2-1-5 に示す。

神戸市の河川は、昭和40年代には急激な都市化の進展等により汚濁の程度が非常に高かったが、法令に基づく規制・指導の強化や下水道の整備等生活排水対策の推進により、多くの河川では顕著に水質の改善が進んだ。一部の河川では、下水処理場からの放流水に含まれる硝化菌の影響を受けてBOD値が高くなる現象が見られたが、高度処理化等により水質は改善された。このため、近年、神戸市の河川は、良好な水質を維持している。

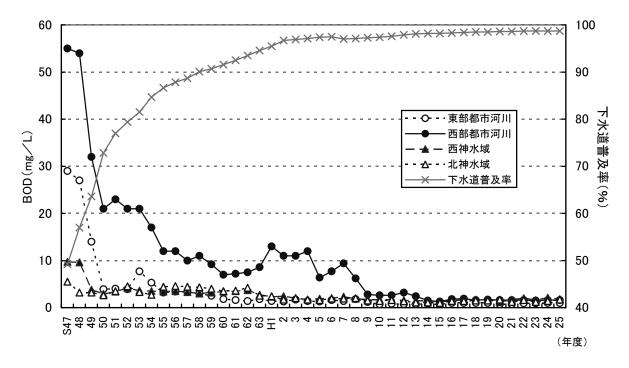
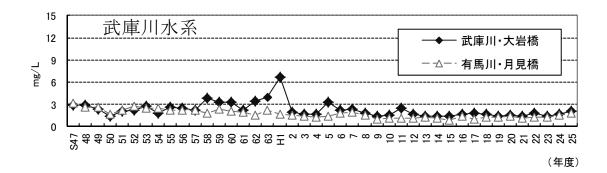
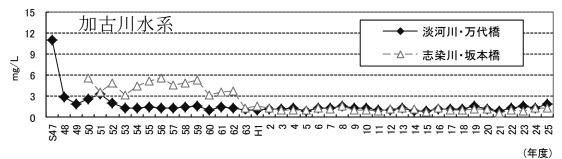



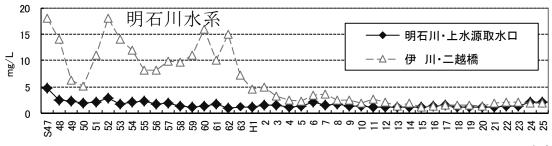
図 2-1-5 河川の水域別平均値 (BOD75%水質値)の経年変化 注)東部都市河川は住吉川・都賀川・生田川、西部都市河川は新湊川・妙法寺川・福田川の平均値。

① 北神水域

北神水域は、武庫川水系と加古川水系に分けられる。いずれも北区の丘陵地域を流下する 比較的流量が多い河川で、農業用水や水道水源として利用されている。昭和 40 年代から 50 年代にかけて、宅地開発等により急激に人口定着が進み生活排水の影響を受けた一部の河 川で、やや水質の悪化が見られたが、下水道の整備や生活排水対策の進捗などによって改 善が進み、近年は良好な水質で推移している。

なお、志染川 (B類型) の環境基準点である坂本橋では、昭和 63 年度以降、BODの環境基準 (3 mg/L 以下) を達成している。




図 2-1-6 北神水域の水質の経年変化(BOD75%値)

② 西神水域

西神水域は、比較的流量が豊富で農業用水や明石市の水道水源として利用されている明石 川水系と、明石市の都市河川である瀬戸川水系とに分けられる。

明石川水系の伊川では、昭和 40 年代から 60 年代にかけて、生活排水や工場等からの排水の影響等を受け、汚濁の程度が高い地点が見られたが、下水道の整備、生活排水対策や工場・事業場対策が進んだ結果、近年は良好な水質で推移している。また、瀬戸川水系は、西区岩岡町を流下する比較的小規模な河川であり、年度により変動も見られるが、おおむね良好な水質で推移している。

なお、明石川 (B類型; BODの環境基準 3 mg/L 以下) の環境基準点である上水源取水口では昭和 48 年度以降、伊川 (C類型;同 5 mg/L 以下) の環境基準点である二越橋では平成元年度以降、ともにBODの環境基準を達成している。

(年度)

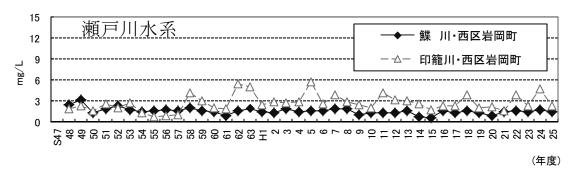
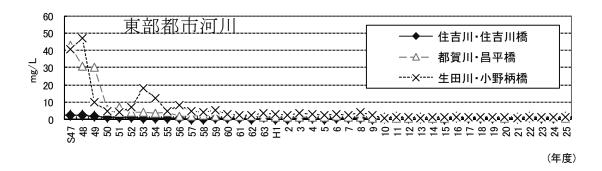



図 2-1-7 西神水域の水質の経年変化 (BOD75%値)

③ 都市河川水域

東灘区から垂水区の旧市街地を六甲山から大阪湾に向かって流下する都市河川は、比較的小規模な急勾配の河川が多い。昭和 40 年代まではかなり汚濁の程度が高かったが、下水道の普及に伴い、多くの河川では水質は大幅に改善された。一部の河川では、下水処理場からの放流水に含まれる硝化菌の影響を受けてBOD値が高くなる現象が見られたが、高度処理化等の対策がとられたことにより、近年ではいずれの河川で良好な水質が維持されている。なお、福田川(E類型)の環境基準点である福田橋では、平成5年度以降、BODの環境基準(10mg/L以下)を達成している。

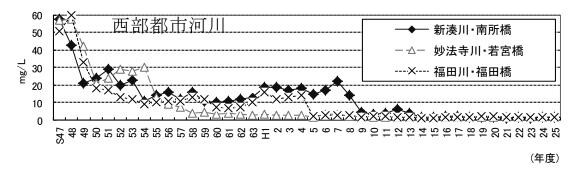
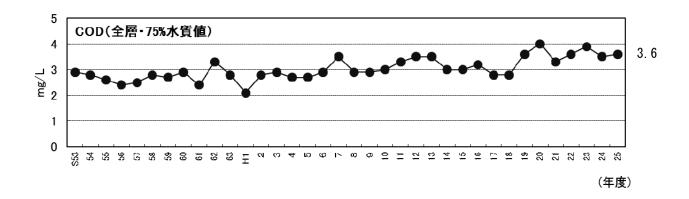
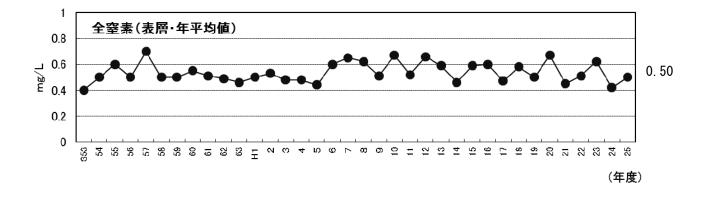


図 2-1-8 都市河川水域の水質の経年変化(BOD75%値)

(6) 湖沼の水質状況

千苅水源池は有効水深27m、満水面積112万㎡、貯水量1,160万㎡の人工湖沼で、神戸市の水道水源として利用されている。


昭和53年3月、千苅水源池について湖沼の環境基準A類型が指定された。


また、平成14年4月には同水源池に全燐について環境基準Ⅱ類型が指定された。

千苅水源池における水質の経年変化を図2-1-9に示す。

平成25年度の測定結果をみると、湖沼における有機汚濁の代表的指標であるCODの75%水質値が3.6mg/Lで、環境基準(3 mg/L以下)を達成しなかった(平成24年度も3.5mg/Lで環境基準を非達成)。また、富栄養化の原因物質である全燐については、年平均値が0.023mg/Lで、環境基準(0.01mg/L以下)、暫定目標(0.019mg/L)ともに達成しなかった(平成24年度も0.023mg/Lで環境基準、暫定目標とも非達成)。

長期的には、いずれの項目も、概ね横ばい傾向で推移している。

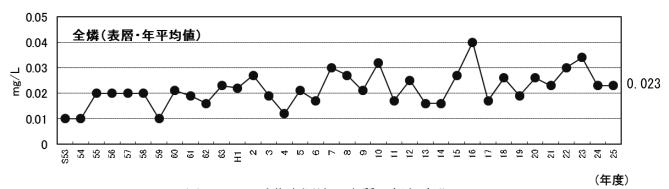


図 2-1-9 千苅水源池の水質の経年変化

(7) 海域の水質状況

① 兵庫運河の水質状況 (表層)

T. COD

兵庫運河 (C類型) の環境基準点である材木橋では、有機汚濁の代表的指標であるCODは、75%水質値が3.5mg/Lで環境基準(8mg/L以下)を達成した。経年的にみると、漸減傾向で推移している(図2-1-10)。また、経月変化をみると、8月に高い値を示したほか、春季から夏季に比較的高く、秋季から冬季に低い傾向が見られた(図2-1-11)。

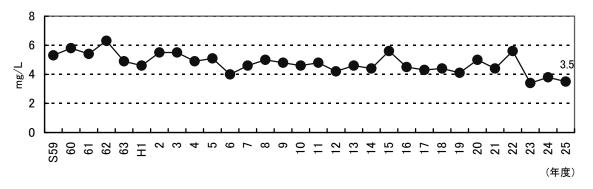


図 2-1-10 兵庫運河・材木橋のCOD (75%水質値) の経年変化

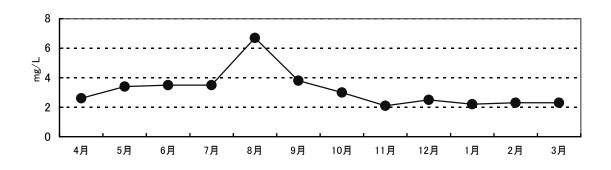


図 2-1-11 兵庫運河・材木橋のCODの経月変化(平成 25 年度)

イ. pH

兵庫運河・材木橋のpH(水素イオン濃度)の環境基準適合状況を表 2-1-10 に示す。pHの経月変化をみると、8月に比較的高く、環境基準値を超過したが、この月はCODも高く、内部生産された植物プランクトンによる炭酸同化作用の影響を受けたものと推測される(図 2-1-12)。

公 2 1 10 八种是的 初水間 9 11 2				
項目	環境基準値(C類型)	年平均値	m/n*	環境基準 適合率
рΗ	7.0以上8.3以下	8. 1	11/12	92%

表 2-1-10 兵庫運河・材木橋の р Нの環境基準適合状況

^{*} m/n:環境基準適合検体数/全検体数

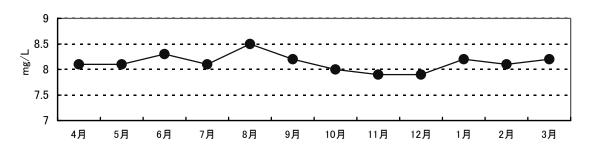


図 2-1-12 兵庫運河・材木橋の p Hの経月変化 (平成 25 年度)

ウ. DO

兵庫運河・材木橋のDO (溶存酸素量) の環境基準適合状況を表 2-1-11 に示す。 DOの経月変化をみると、7、10、11 月に比較的低い値を示した(図 2-1-13)。

表 2-1-11 兵庫運河・材木橋のDOの環境基準適合状況

項目	環境基準値(C類型)	年平均値	m/n*	環境基準 適合率
DO	2 mg/L以上	8. 0	12/12	100%

* m/n:環境基準適合検体数/全検体数

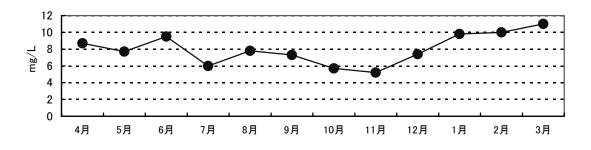


図 2-1-13 兵庫運河・材木橋のDOの経月変化(平成 25 年度)

工. 全窒素

兵庫運河・材木橋の全窒素を経年的にみると、漸減傾向で推移している(図 2-1-14)。 また、経月変化をみると、10月に比較的高い値を示した(図 2-1-15)。

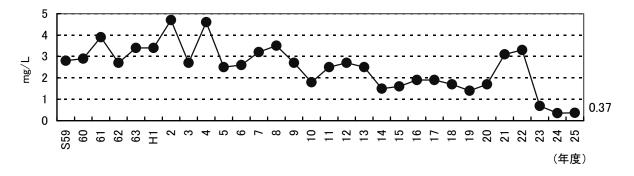


図 2-1-14 兵庫運河・材木橋の全窒素(年平均値)の経年変化

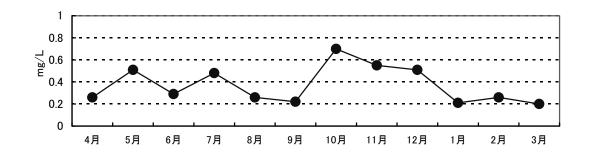


図 2-1-15 兵庫運河・材木橋の全窒素の経月変化 (平成 25 年度)

才. 全燐

兵庫運河・材木橋の全燐を経年的にみると、長期的には漸減傾向で推移している(図 2-1-16)。また、経月変化をみると、 $1\sim3$ 月に比較的低い値を示した(図 2-1-17)。

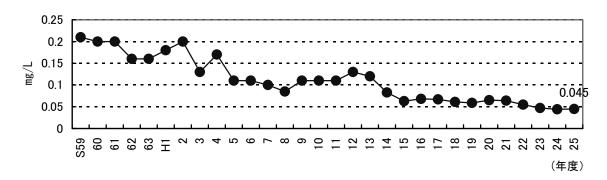


図 2-1-16 兵庫運河・材木橋の全燐(年平均値)の経年変化

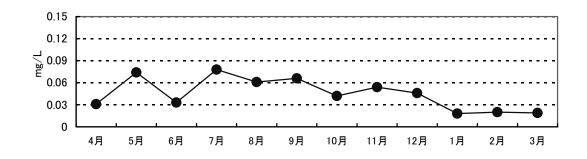


図 2-1-17 兵庫運河・材木橋の全燐の経月変化(平成 25 年度)

② 神戸海域の表中層の水質の状況

T. COD

(ア) 分布状況

平成25年度の地点毎のCOD (75%水質値)を表2-1-12及び図2-1-18に示す。 神戸海域(大阪湾)の西側に位置する明石海峡から、東側に位置する大阪湾奥部に 向かって、COD濃度が高くなる傾向が見られた。

表 2-1-12 神戸海域のCOD (75%水質値:mg/L) の状況 (平成 25 年度)

steed with	I	V-15 6	New Late Late	a/ 1 mm 11.
類型	No.	海域名	測定地点名	75%水質値
. C 類型	56	第2工区南	六甲大橋	5.8
	59	葺合港	摩耶大橋	4. 3
	61	神戸港東	神戸大橋	4. 4
	65	六甲アイランド南	沖合(3)	5. 5
	76	第4工区南	沖合(1)	6. 4
	79	ポートアイランド東	第6防波堤北	4. 9
	80	神戸港	中央	4. 1
	62	ポートアイランド南	沖合(1)	4. 7
	66	第一防波堤南	沖合	4.2
В	67	苅藻南	神戸灯台南	4.0
類型	68	苅藻島南	沖合	3. 9
型	77	第4工区南	沖合(2)	5. 3
	78	六甲アイランド南	観測塔	5. 7
	81	六甲アイランド南	沖合(2)	5. 0
A 類型	70	須磨港	西防波堤	3. 5
	71	須磨海域	JR須磨駅前	3. 2
	72	須磨海域	海釣公園	3. 4
	74	垂水海域	垂水漁港	2. 4
	75	舞子海域	舞子漁港	2. 1
	82	ポートアイランド南	沖合(3)	3. 9
	83	垂水海域	沖合	1.9

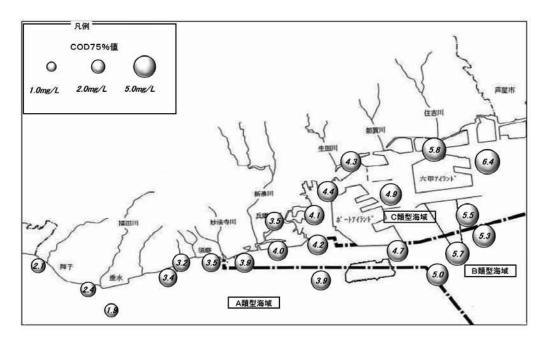


図 2-1-18 神戸海域のCOD (75%水質値) の分布状況 (平成 25 年度)

(イ)経年変化

COD (75%水質値) の類型別平均値(兵庫運河を除く、以下同じ)の経年変化を図 2-1-19に示す。平成 25年度は、A類型 2.9mg/L、B類型 4.7mg/L、C類型 5.1mg/Lで、全類型で前年度より高い値を示した。経年的にはほぼ横ばいで推移している。

図 2-1-19 神戸海域のCOD (75%水質値) の経年変化

(ウ) 経月変化

CODの類型別の経月変化を図 2-1-20 に示す。

通常、夏季に高く冬季に低い傾向を示すが、平成 25 年度は、特にB、C類型において 12、1月にも比較的高い値を示した。

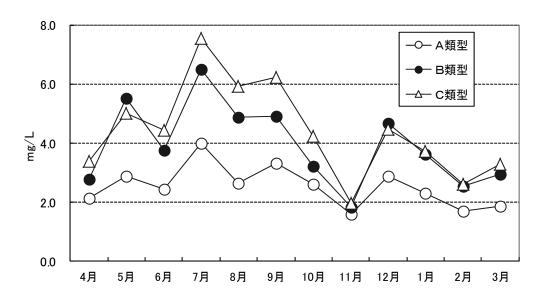


図 2-1-20 神戸海域のCODの経月変化(平成 25 年度)

(工) 構成比率

CODに占める溶解性COD (孔径 $0.45 \mu m$ のメンブランフィルターでろ過した後のCOD)と懸濁性COD(全CODから溶解性CODを差し引いた値)の構成比率を図 2-1-21に示す。各類型とも溶解性CODはあまり変動しないが、懸濁性CODは、変動の幅が大きかった。またA類型よりB、C類型で懸濁性CODの比率が高くなっていた。懸濁性CODの多くがプランクトン等の増殖により付加されたCOD (海域の内部で生産されたCOD)であると推測され、後述のクロロフィル a の経月変化からも裏付けられる。

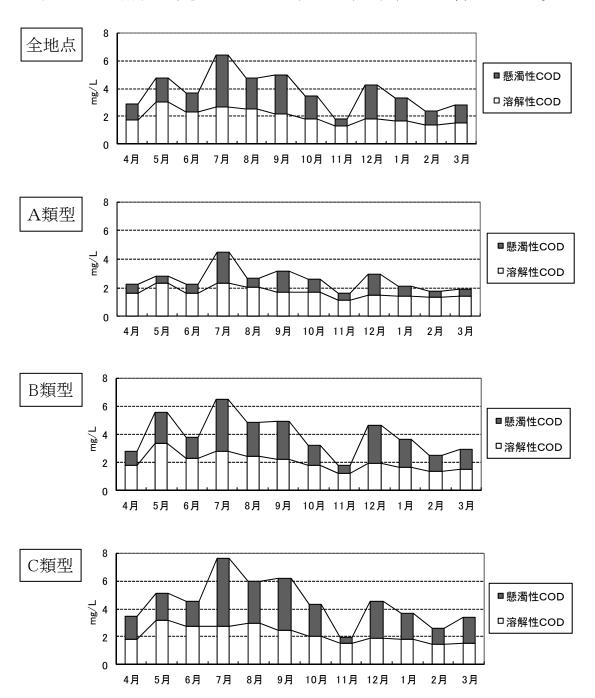


図 2-1-21 神戸海域のCOD構成比率の経月変化(平成 25 年度)

(注) グラフは、溶解性CODを測定している 17 地点(A類型 4 地点、B類型 7 地点、C類型 6 地点)の値を集計したもの。

イ. 全窒素

(ア) 分布状況

平成25年度の地点毎の全窒素(年平均値)を表2-1-13に示す。

神戸海域の西側に位置する明石海峡から東側に位置する大阪湾奥部に向かって全窒素濃度が高くなる傾向が見られた。

表 2-1-13 神戸海域の全窒素 (年平均値:mg/L) の状況 (平成 25 年度)

類型	No.	海域名	測定地点名	年平均値
	5 6	第2工区南	六甲大橋	0.50
IV	5 9	葺合港	摩耶大橋	0.30
13.7	6 1	神戸港東	神戸大橋	0. 31
類	6 5	六甲アイランド南	沖合(3)	0. 37
型	7 6	第4工区南	沖合(1)	0.38
	7 9	ポートアイランド東	第6防波堤北	0.30
	8 0	神戸港	中央	0. 28
	6 2	ポートアイランド南	沖合(1)	0. 27
■類型	6 6	第一防波堤南	沖合	0. 23
	6 7	苅藻南	神戸灯台南	0. 26
	6 8	苅藻島南	沖合	0. 22
型	7 7	第4工区南	沖合(2)	0. 36
	7 8	六甲アイランド南	観測塔	0.30
	8 1	六甲アイランド南	沖合(2)	0. 29
	7 0	須磨港	西防波堤	0.24
	7 1	須磨海域	JR須磨駅前	0. 20
π	7 2	須磨海域	海釣公園	0. 19
Ⅱ 類 型	7 4	垂水海域	垂水漁港	0. 20
型	7 5	舞子海域	舞子漁港	0. 19
	8 2	ポートアイランド南	沖合 (3)	0. 22
	8 3	垂水海域	沖合	0. 19

(イ) 経年変化

全窒素の類型別の年平均値の経年変化を図 2-1-22 に示す。 経年的にみると、各類型とも漸減傾向で推移している。

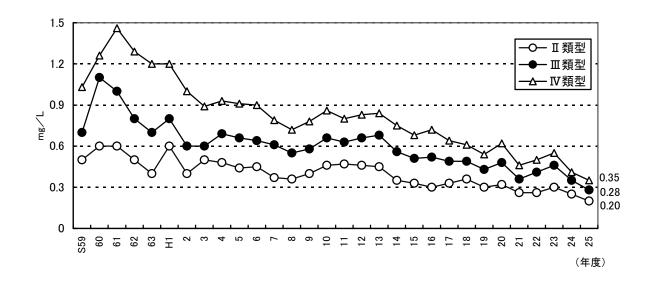
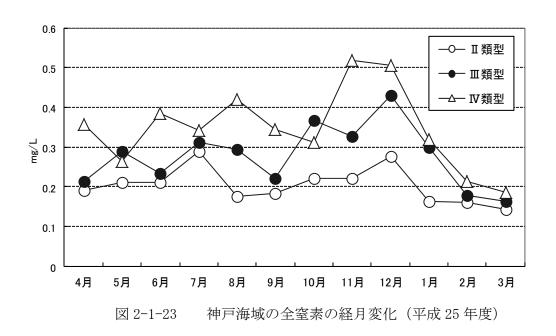
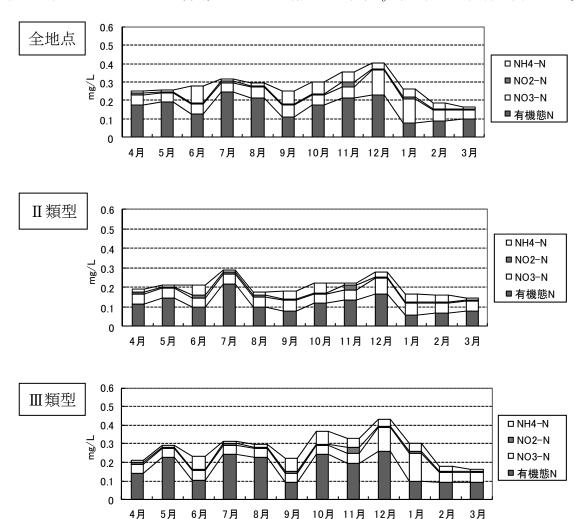



図 2-1-22 神戸海域の全窒素(年平均値)の経年変化

(注) 全窒素及び全燐について大阪湾水域を対象に水域指定がなされたのは、平成7年2月28日である。


(ウ) 経月変化

全窒素の類型別の経月変化を図 2-1-23 に示す。濃度はII類型がもっとも低く、IV類型が最も高い値を示す月が多かった。季節毎の傾向は特に見られなかったが、2、3月に各類型とも低い値を示した。

(工) 構成比率

全窒素に占める各態窒素の割合を図 2-1-24 に示す。各類型とも、植物プランクトンに由来する有機態窒素の占める割合が比較的高かったが、12、1月は他の月に比べ、河川からの流入や植物プランクトンの分解から生じる硝酸性窒素 $(N0_3-N)$ の占める割合が高かった。

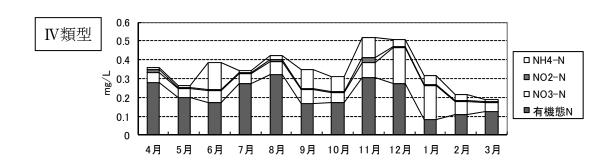


図 2-1-24 神戸海域の窒素の構成比率の経月変化(平成 25 年度)

ウ. 全燐

(ア) 分布状況

平成25年度の地点毎の全燐(年平均値)を表2-1-14に示す。

神戸海域の西側に位置する明石海峡から東側に位置する大阪湾奥部に向かって全燐濃度が高くなる傾向が見られた。

表 2-1-14 神戸海域の全燐 (年平均値:mg/L) の状況 (平成 25 年度)

類型	No.	海域名	測定地点名	年平均値
	5 6	第2工区南	六甲大橋	0.050
IV 類型	5 9	葺合港	摩耶大橋	0.040
17.7	6 1	神戸港東	神戸大橋	0.037
類類	6 5	六甲アイランド南	沖合(3)	0.042
坐	7 6	第4工区南	沖合(1)	0.046
	7 9	ポートアイランド東	第6防波堤北	0.039
	8 0	神戸港	中央	0.037
	6 2	ポートアイランド南	沖合(1)	0.033
■類型	6 6	第一防波堤南	沖合	0.029
	6 7	苅藻南	神戸灯台南	0.032
	6 8	苅藻島南	沖合	0.028
坐	7 7	第4工区南	沖合(2)	0.042
	7 8	六甲アイランド南	観測塔	0.037
	8 1	六甲アイランド南	沖合(2)	0.036
	7 0	須磨港	西防波堤	0.031
	7 1	須磨海域	JR須磨駅前	0.026
п	7 2	須磨海域	海釣公園	0.025
Ⅱ 類 型	7 4	垂水海域	垂水漁港	0.027
坐	7 5	舞子海域	舞子漁港	0. 025
	8 2	ポートアイランド南	沖合(3)	0. 027
	8 3	垂水海域	沖合	0. 025

(イ) 経年変化

全燐の類型別の年平均値の経年変化を図 2-1-25 に示す。 経年的にみると、各類型とも漸減傾向で推移している。

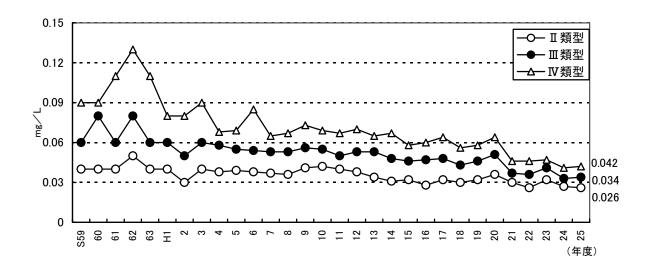
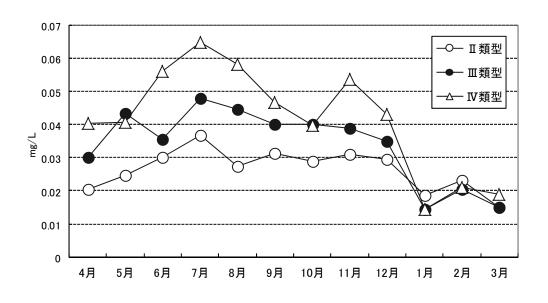
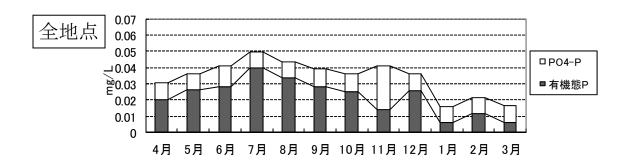
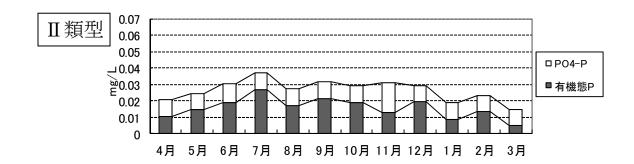


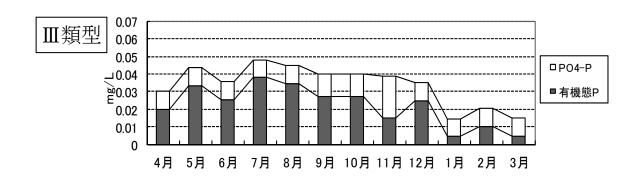
図 2-1-25 神戸海域の全燐(年平均値)の経年変化

(注) 全窒素及び全燐について大阪湾水域を対象に水域指定がなされたのは、平成7年2月28日である。

(ウ) 経月変化

全燐の類型別の経月変化を図 2-1-26 に示す。濃度はII類型がもっとも低く、IV類型が最も高い値を示す月が多かった。季節変動を見ると各類型とも春季から夏季に濃度が高く冬季に濃度が低くなる傾向が見られた。


図 2-1-26 神戸海域の全燐の経月変化(平成 25 年度)

(工) 構成比率

全燐に占める無機態燐($P0_4$ -P:燐酸性燐)及び有機態燐の割合を図 2-1-27 に示す。各類型とも、植物プランクトンに由来する有機態燐は、概ね春季から夏季に高く、秋季から冬季に低い傾向が見られた。河川からの流入や植物プランクトンの分解から生じる無機態燐($P0_4$ -P:燐酸性燐)はあまり変動が見られなかったが、11 月には高い値を示した。

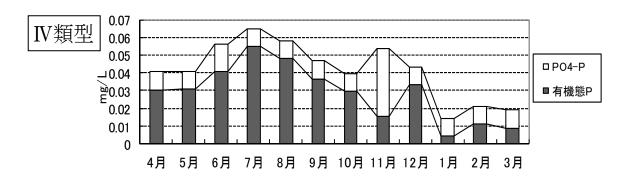


図 2-1-27 神戸海域の燐構成比率の経月変化(平成 25 年度)

工. pH

(ア) 環境基準適合状況

平成25年度のpHの環境基準適合状況を表2-1-15に示す。

環境基準に適合しなかった検体は、すべて環境基準値の上限 (p H8.3) を超過し、アルカリ性側の数値になったものであり、特に春季から夏季に顕著であった。増殖した植物プランクトンによる炭酸同化作用の影響を受けたものと推測される。

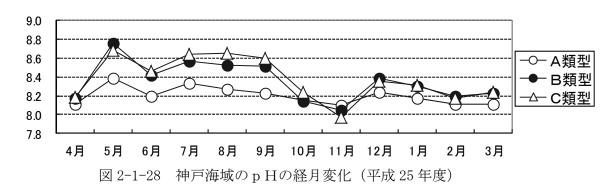

XIII II III MARE III WALLET WA						
水域類型	環境基準値	環境基準適合検体数 /全検体数	環境基準 適合率			
A類型	7.8~8.3	71/84	85%			
B類型	7.8~8.3	45/84	54%			
C類型	7.0~8.3	44/84	52%			

表2-1-15 神戸海域の р 日の環境基準の適合状況

(イ) 経月変化

p Hの類型別の経月変化を図2-1-28に示す。

春季から夏季には、B、C類型がA類型よりやや高い値を示したが、秋季から冬季には、各類型とも同程度の値を示した。CODとほぼ同様の変動を示していることからも、植物プランクトンの影響が推測される。

オ.DO

(ア) 環境基準適合状況

平成25年度のDOの環境基準適合状況を表2-1-16に示す。

B、C類型では環境基準適合率は100%であったが、A類型では7月から11月に環境基準値(7.5mg/L)を下回る値を示した。

12.2	我2110 种为做数少100%,我基单少通目状况						
水域類型	環境基準値	環境基準適合検体数/ 全検体数	環境基準 適合率				
A類型	7.5mg/L以上	64/84	76%				
B類型	5mg/L以上	84/84	100%				
C類型	2mg/L以上	84/84	100%				

表2-1-16 神戸海域のDOの環境基準の適合状況

(イ)経月変化

D〇の類型別の経月変化を図2-1-29に示す。

類型毎の傾向は特に見られなかった。季節でみると、通常、海水温の上昇のため夏季に低く冬季に高い傾向を示すが、平成25年度は、春季から夏季にも高い値を示した。 p H と同様に、植物プランクトンの影響を受けたものと推測される。

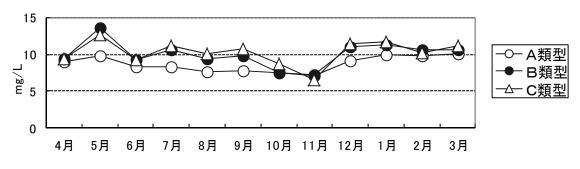


図 2-1-29 神戸海域のDOの経月変化(平成 25 年度)

力. 透明度

透明度の類型別の経月変化を図2-1-30に示す。

年間を通してA類型の透明度が最も高く、次いでB類型、C類型の順で低くなっていた。季節でみると、各類型とも冬季に高い傾向が見られた。

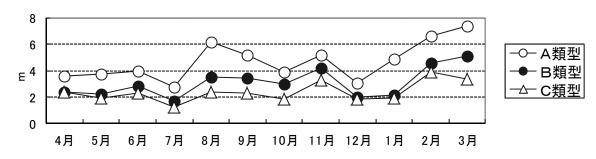


図 2-1-30 神戸海域の透明度の経月変化(平成 25 年度)

キ. クロロフィルa

クロロフィル a の類型別の経月変化を図 2-1-31 に示す。クロロフィル a は植物が有する色素であり、植物プランクトンの増殖の指標となる。

年間を通してA類型が最も低い値を示した。季節毎の傾向は特に見られなかった。

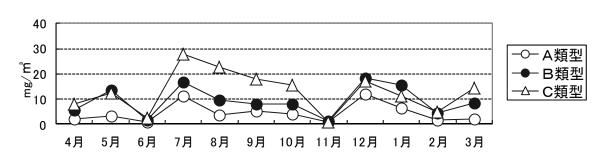


図 2-1-31 神戸海域のクロロフィル a の経月変化 (平成 25 年度)

③ 神戸海域の水質の鉛直分布

海域の鉛直分布特性を把握するため、常時監視地点 22 地点のうち、表 2-1-17 に示す 13 地点で、表中層に加え、中下層(海面下 6m)及び底層(海底上 1m)でも水質測定を行っている。中下層、底層の測定項目は、水温、COD、DO、全窒素 (T-N)、Tンモニア性窒素 (NL_4-N) 、 亜硝酸性窒素 (NO_2-N) 、硝酸性窒素 (NO_3-N) 、全燐 (T-P)、燐酸性燐 (PO_4-P) 、塩素量の 10 項目である。なお、No.76、No.80、No.81、No.82、No.83 の 5 地点では、溶解性 COD を中下層、底層でも年 4 回測定している(表 2-1-18)。

表 2-1-17 3層で測定を行っている地点と各地点の水深(平成 25 年度)

類型 (※)	地点 No.	測定地点名	水深(m) 最小~最大(平均)
	7 2	須磨海域・海釣公園	15.0~17.5(16.0)
A (Ⅱ)	8 2	ポートアイランド南・沖合(3)	16.3~17.6(16.9)
	8 3	垂水海域・沖合	20. 2~25. 2 (23. 0)
	6 2	ポートアイランド南・沖合(1)	15.7~17.4(16.5)
	6 6	第一防波堤南・沖合	14.0~15.6(14.5)
В	6 8	苅藻島南・沖合	14.7~16.8(15.7)
(Ⅲ)	7 7	第4工区南・沖合(2)	15.2~16.5(16.0)
	7 8	六甲アイランド南・観測塔	15.8~17.3(16.6)
	8 1	六甲アイランド南・沖合(2)	16.9~18.3(17.6)
	6 5	六甲アイランド南・沖合(3)	14.2~16.0(15.0)
С	7 6	第4工区南・沖合(1)	11.7~12.8(12.4)
(IV)	7 9	ポートアイランド東・第6防波堤北	13.3~15.1(14.2)
	8 0	神戸港・中央	9.4~11.1(10.2)

※()内は、全窒素・全燐にかかる水域類型

表 2-1-18 各層の測定項目

採取層	採取位置	項 目
表中層	海面下 0.5m, 2.0m の 等量混合	pH, COD, DO, 大腸菌群数, n-ヘキサン抽出物質, T-N, T-P, 全亜鉛, /ニルフェ/-ル, LAS, 健康項目, 要監視項目, 塩素量, NH ₄ -N, NO ₂ -N, NO ₃ -N, PO ₄ -P, 溶解性 COD, クロロフイル a, 植物プランクトン, 濁度, SS
中下層	海面下 6m	水温, COD, DO, T-N, NH ₄ -N, NO ₂ -N, NO ₃ -N, T-P, PO ₄ -P, 塩素量の 10項目
底 層	海底上 1m	(※ No.76、No.80、No.81、No.82、No.83 の 5 地点で、溶解性 COD を中下層、底層で年 4 回測定)

T. COD

3層で測定している 13 地点の年平均値は、表中層 3.8 mg/L、中下層 2.6 mg/L、底層 1.8 mg/Lであった。表中層では植物プランクトンの増殖の影響を受けやすく、COD値も表中層、中下層、底層の順に低くなる傾向にあるが、11 月は、各層とも低い値を示した。底層は年間を通して、あまり変動がなかった(図 2-1-32)。

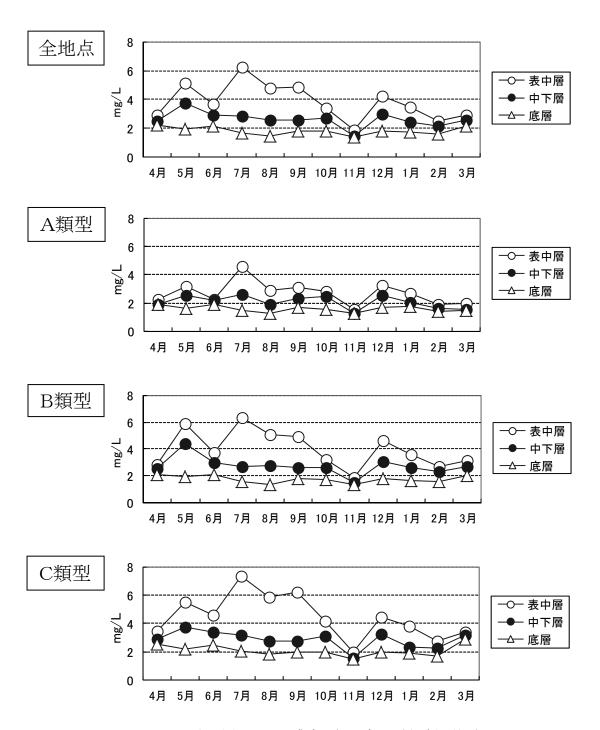


図 2-1-32 水深層別COD濃度の経月変化(水域類型別)

イ. 全窒素

3層で測定している 13 地点の年平均値は、表中層 0. 28 mg/L、中下層 0. 27 mg/L、底層 0. 25 mg/Lと、ほとんど差はないが下の層ほど低い値を示した。各類型とも、概ね 3 層とも同程度で推移しているが、III、IV類型で、 $4 \sim 6$ 月に中下層が、 $11 \sim 1$ 月に表中層が高くなる傾向が見られた(図 2-1-33)。

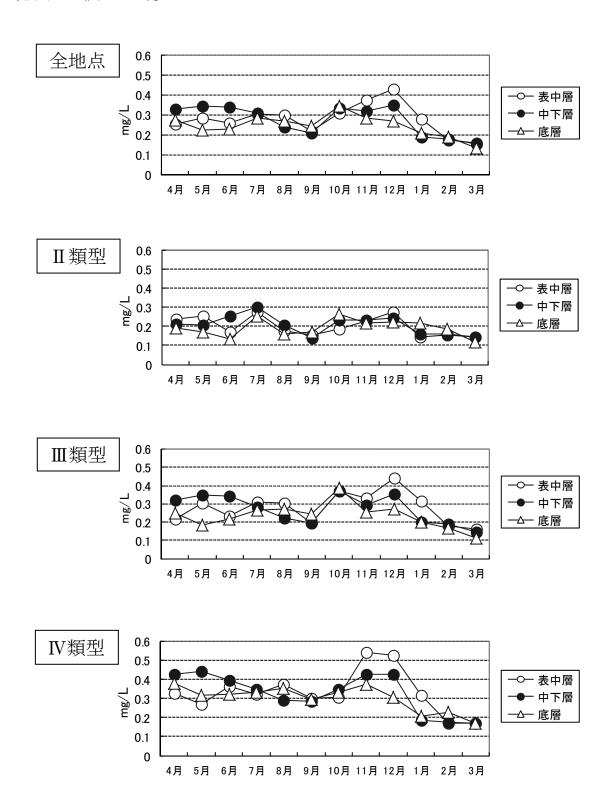
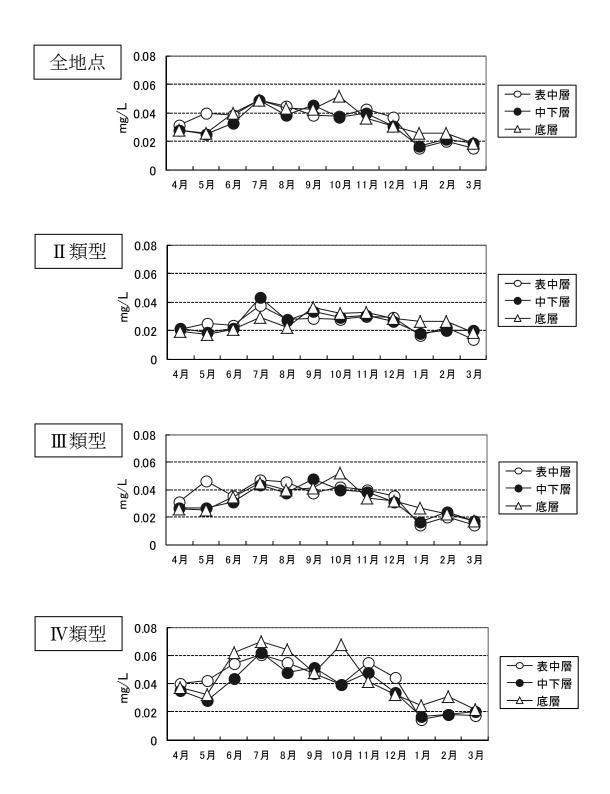
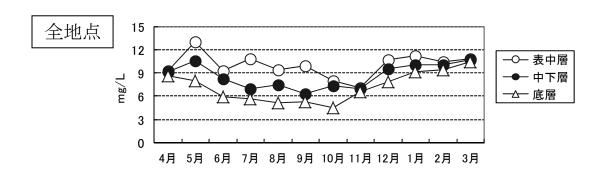
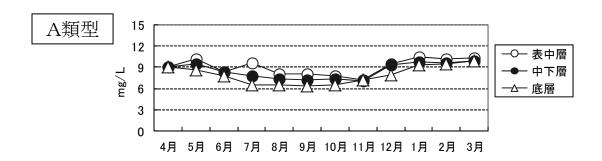
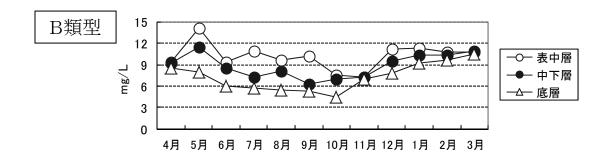


図 2-1-33 水深層別全窒素濃度の経月変化(水域類型別)

ウ. 全燐

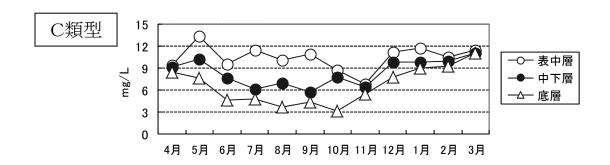
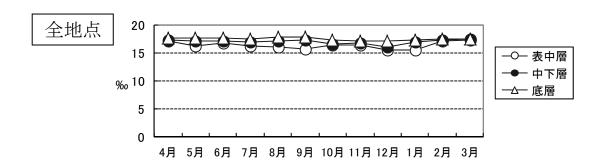
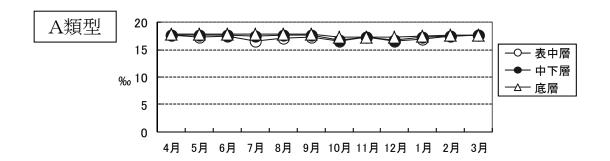
3層で測定している 13 地点の年平均値は、表中層 0.034mg/L、中下層 0.032mg/L、底層 0.035mg/Lであった。IV類型では、夏季を中心に底層が高くなる傾向が見られた。これは、貧酸素時の底泥からの溶出の影響を受けたものと推測される(図 2-1-34)。

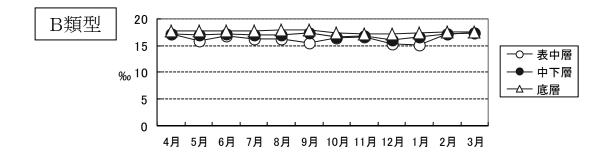





図 2-1-34 水深層別全燐濃度の経月変化(水域類型別)

エ. DO

3層で測定している 13 地点の年平均値は、表中層 10.0 mg/L、中下層 8.6 mg/L、底層 7.2 mg/Lと、下の層ほど低い値を示した。特にB、C類型では春季から秋季にかけて表中層と底層のDO濃度の差が大きく、10 月には、底層DO濃度が $2 \, \text{mg/L}$ 以下となった貧酸素水塊が出現した地点が $2 \, \text{地点確認された}$ (図 2-1-35)。


図 2-1-35 水深層別DO濃度の経月変化(水域類型別)

才. 塩素量

3層で測定している 13 地点の年平均値は、表中層 16.4‰、中下層 17.0‰、底層 17.5‰であり、下の層ほど高い値を示した。表中層は降雨や河川水の影響を受け、若干低い値を示す月があったが、平成 25 年度については、調査日前にまとまった降雨がなかったことから、各類型・各層とも年間を通してあまり変動が見られなかった(図 2-1-36)。

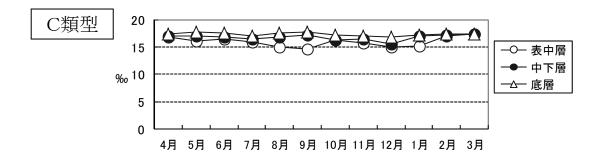


図 2-1-36 水深層別塩素量の経月変化(水域類型別)

2. 植物プランクトン調査

(1) 調査の概要

① 調査の目的

海域に分布する植物プランクトンの実態を把握するとともに、植物プランクトンが水質に与える影響等を検討する際の基礎資料とする。

② 調査期間、頻度

平成 25 年 4 月~平成 26 年 3 月、月 1 回 (年 12 回)

③ 調査地点(図2-2-1)

水質測定計画に基づく調査地点から12地点(各水域類型4地点)を選定した。

類型	地点No.	調査地点名
A類型	71	須磨海域・ J R 須磨駅前
	74	垂水海域・垂水漁港
	82	ポートアイランド南・沖合 (3)
	83	垂水海域・沖合
B類型	62	ポートアイランド南・沖合 (1)
	66	第一防波堤南・沖合
	67	苅藻南・神戸灯台南
	81	六甲アイランド南・沖合(2)
C類型	56	第2工区南・六甲大橋
	61	神戸港東・神戸大橋
	65	六甲アイランド南・沖合(3)
	79	ポートアイランド東・第6防波堤北

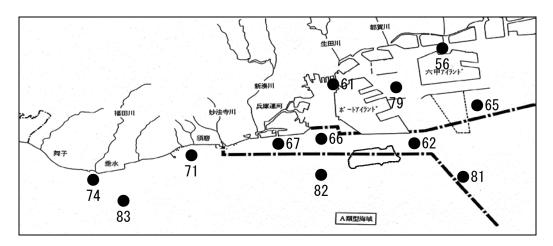


図 2-2-1 植物プランクトン調査地点図

④ 調査方法

表中層混合水 (海面下0.5mと2.0mの等量混合) を試料とし、中性ホルマリンで固定の後、種の同定及び細胞数の計測を行った。

(2) 調査結果

① 地点別の出現状況

地点別に植物プランクトンの細胞数をみると、平成 25 年度の全地点の年間平均値は $135,248\times10^5$ 個/ m³ で、例年並みであった前年度($63,681\times10^5$ 個/ m³ の約 2 倍の細胞数であった。類型別では、A類型が $66,589\times10^5$ 個/ m³ で最も少なく、次いでB類型の $146,983\times10^5$ 個/ m³、C類型の $192,171\times10^5$ 個/ m³ と、概ね西側海域より東側海域が多くなる傾向であった。測定地点別の年間平均値を図 2-2-2 に示す。

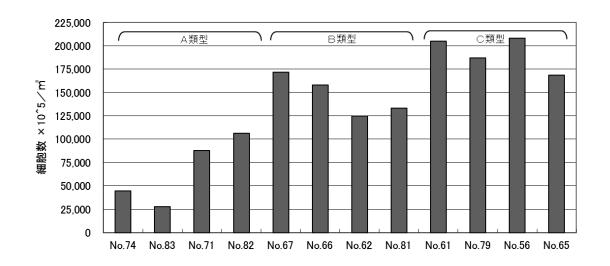
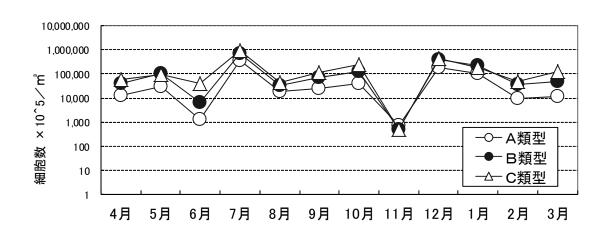



図 2-2-2 植物プランクトンの測定地点別出現状況 (年平均値)

② 経月変化

植物プランクトン細胞数の類型別の経月変化を図2-2-3に示す。例年夏季を中心に 植物プランクトン数が多くなるが、平成25年度は11月に各類型とも低い値を示した ほかは、ほぼ同程度で推移していた。

調査日: 平成25年 4月10日

	 全個体数			- 調宜日:平月	成25年 4月10日
地点	細胞数/m³		種名	細胞数/m³	全個体数に 占める割合
No. 56	$51,400 \times 10^5$	Skeletonema	costatum	$34,700 \times 10^5$	67. 5
		Chaetoceros	spp.	$8,800 \times 10^5$	17. 1
		Chaetoceros	curvisetus	$2,200 \times 10^5$	4.3
		Thalassiosira	spp.	$1,900 \times 10^5$	3. 7
		<i>Leptocylindrus</i>	minimum	$1,700 \times 10^5$	3. 3
No. 61	74, 900 $\times 10^5$	Skeletonema	costatum	$45,500 \times 10^5$	60.7
		Chaetoceros	curvisetus	$11,300 \times 10^5$	15.1
		Chaetoceros	spp.	$10,800 \times 10^5$	14. 4
		Nitzschia	pungens	$3,000 \times 10^5$	4. 0
		Leptocylindrus	minimum	900×10^{5}	1. 2
No. 62	$39,000 \times 10^5$	Skeletonema	costatum	$29,100 \times 10^5$	74. 6
		Chaetoceros	spp.	$2,500 \times 10^5$	6. 4
		Thalassiosira	spp.	$2,000 \times 10^5$	5. 1
		Chaetoceros	affinis	$1,400 \times 10^5$	3.6
		Leptocylindrus	minimum	$1,000 \times 10^5$	2.6
No. 65	$42,200 \times 10^5$	Skeletonema	costatum	$30,400 \times 10^5$	72.0
		Chaetoceros	spp.	$7,400 \times 10^5$	17. 5
		Nitzschia	pungens	$1,500 \times 10^5$	3.6
		Gymnodinium	spp.	$1,000 \times 10^5$	2.4
		Eutreptiella	sp.	700×10^{5}	1. 7
No. 66	$36,200 \times 10^5$	Skeletonema	costatum	$30,700 \times 10^5$	84. 8
		Chaetoceros	spp.	$2,000 \times 10^5$	5. 5
		Chaetoceros	curvisetus	$1,800 \times 10^5$	5.0
		Leptocylindrus	minimum	900×10^{5}	2. 5
		Thalassiosira	spp.	500×10^{5}	1.4
No. 67	48, 000 $\times 10^5$	Skeletonema	costatum	$32,200 \times 10^5$	67. 1
		Chaetoceros	spp.	$11,800 \times 10^5$	24.6
		Chaetoceros	curvisetus	$2,100 \times 10^5$	4. 4
		Thalassiosira	spp.	700×10^{5}	1.5
		Chaetoceros	affinis	400×10^{5}	0.8
No. 71	11, 000 $\times 10^5$	Skeletonema	costatum	$5,900 \times 10^5$	53.6
		Chaetoceros	spp.	$2,900 \times 10^5$	26. 4
		Leptocylindrus	minimum	$1,100 \times 10^{5}$	10.0
		Chaetoceros	curvisetus	500×10^{5}	4. 5
		Thalassiosira	spp.	400×10^{5}	3. 6
No. 74	$3,490 \times 10^5$	Skeletonema	costatum	$1,560 \times 10^5$	44. 7
		Chaetoceros	spp.	760×10^{5}	21.8
		Chaetoceros	affinis	300×10^{5}	8.6
		Chaetoceros	curvisetus	280×10^{5}	8.0
		Thalassiosira	spp.	210×10^{5}	6.0
No. 79	$59,400 \times 10^5$	Skeletonema	costatum	$41,600 \times 10^5$	70.0
		Chaetoceros	spp.	$5,600 \times 10^5$	9. 4
		Chaetoceros	curvisetus	$4,800 \times 10^5$	8. 1
		Nitzschia	pungens	$2,700 \times 10^5$	4. 5
		Thalassiosira	spp.	$1,900 \times 10^5$	3. 2
No. 81	$45,400 \times 10^5$	Skeletonema	costatum	$31,800 \times 10^5$	70.0
		Chaetoceros	spp.	$7,600 \times 10^5$	16. 7
		Leptocylindrus	minimum	$2,100 \times 10^{5}$	4.6
		Nitzschia	pungens	$1,600 \times 10^5$	3.5
		Gymnodinium	spp.	700×10^{5}	1. 5
No. 82	38, 700 $\times 10^5$	Skeletonema	costatum	$25,600 \times 10^5$	66. 1
		Chaetoceros	spp.	$8,800 \times 10^5$	22. 7
		Chaetoceros	curvisetus	$1,500 \times 10^5$	3. 9
		Thalassiosira	spp.	$1,100 \times 10^5$	2.8
		Nitzschia	pungens	400×10^{5}	1.0
No. 83	380×10^{5}	Thalassiosira	spp.	110×10^{5}	28. 9
		Chaetoceros	spp.	90×10^{5}	23. 7
		Eutreptiella	sp.	40×10^{5}	10. 5
		Gymnodinium	spp.	30×10^{5}	7. 9
		Skeletonema	costatum	20×10^{5}	5. 3

	全個体数		優占種	Í	
地点	細胞数/m³		種名	細胞数/m³	全個体数に 占める割合
No. 56	$124,000 \times 10^5$	Leptocylindrus	minimum	121,000 ×10 ⁵	97. 6
		Nitzschia	pungens	$1,060 \times 10^{5}$	0.9
		Gymnodinium	spp.	780 ×10 ⁵	0.6
		Skeletonema	costatum	360×10^{5}	0.3
		Dinophysis	acuminata	180 ×10 ⁵	0. 1
No. 61	$72,800 \times 10^5$	<i>Leptocylindrus</i>	minimum	$70,600 \times 10^{5}$	
		Nitzschia	pungens	1, 010 ×10 ⁵	
		Skeletonema	costatum	340 ×10 ⁵	0.5
		Thalassionema	nitzschioides	200 ×10 ⁵	
		Gymnodinium	spp.	200 ×10 ⁵	
No. 62	$58,000 \times 10^5$	Leptocylindrus	minimum	54, 700 ×10 ⁵	
		Skeletonema	costatum	1,890 ×10 ⁵	
		Nitzschia	spp.	500 ×10 ⁸	
		Nitzschia	pungens	380 ×10 ⁵	
	_	Thalassiosira	spp.	100 ×10 ⁵	
No. 65	$104,000 \times 10^5$	<i>Leptocylindrus</i>	minimum	$101,000 \times 10^{5}$	
		Skeletonema	costatum	$1,130 \times 10^{5}$	
		Nitzschia	pungens	560 ×10 ⁵	
		Gymnodinium	spp.	420 ×10 ⁵	
		Nitzschia	spp.	370 ×10 ⁵	
No. 66	$61,200 \times 10^5$	Leptocylindrus	minimum	59, 200 ×10 ⁵	
		Nitzschia	spp.	640 ×10 ⁵	
		Skeletonema	costatum	590 ×10 ⁵	****
		Nitzschia	pungens	210 ×10 ⁵	***
		Thalassionema	nitzschioides	180 ×10 ⁵	
No. 67	83, 000 $\times 10^5$	Leptocylindrus	minimum	75, 500 ×10 ⁵	
		Skeletonema	costatum	6, 500 ×10 ⁵	
		Nitzschia	pungens	430 ×10 ⁵	****
		Nitzschia	spp.	170 ×10 ⁵	
=.	F. F.O. 5	Thalassionema	nitzschioides	160 ×10 ⁵	
No. 71	$51,700 \times 10^{5}$	Leptocylindrus	minimum	48, 200 ×10 ⁵	
		Skeletonema	costatum	2, 590 ×10 ⁵	
		Nitzschia	spp.	570 × 10 ⁵	
		Thalassionema	nitzschioides	90 ×10 ⁵	
N - 74	10,000 24105	Rhizosolenia	fragilissima	60 ×10 ⁵	
No. 74	19, 000 $\times 10^5$	Leptocylindrus	minimum	15, 900 ×10 ⁵	
		Skeletonema	costatum	2,800 ×10 ⁵	****
		Nitzschia	spp.	110 ×10 ⁵	
		Chaetoceros	curvisetus	80 ×10 ⁵	
N- 70	90 000 2/105	Thalassiosira	spp.	60 ×10 ⁵	
No. 79	$80,900 \times 10^5$	Leptocylindrus	minimum	79, 300 × 10 ⁵	***
		Nitzschia	pungens	430 ×10 ⁵	
		Skeletonema	costatum	370×10^{5} 280×10^{5}	
		Gymnodinium Nitzschia	spp.	230×10^{6}	****
No. 81	$200,000 \times 10^{5}$	Leptocylindrus	spp.	$163,000 \times 10^{5}$	
NO. 61	200, 000 × 10	Skeletonema	minimum	$35,200 \times 10^{6}$	
		Nitzschia	costatum	810 ×10 ⁶	
		Rhizosolenia	pungens fragilissima	640 × 10	****
		Gymnodinium		370×10^{6}	***
No. 82	$49,700 \times 10^5$	Leptocylindrus	spp. minimum	$46,700 \times 10^{5}$	
110.02	49, 100 X 10°	Skeletonema		$1,680 \times 10^{5}$	
		Nitzschia	costatum	620×10^{6}	****
			spp.		
		Nitzschia Theleggieging	pungens	300×10^{5}	
No 09	2 500 2405	Thalassiosira	spp.	90 ×10 ⁵	
No. 83	$2,580 \times 10^{5}$	Leptocylindrus Skalatonoma	minimum	$2,140 \times 10^{5}$	****
		Skeletonema	costatum	210 ×10 ⁵	
		Nitzschia	spp.	100 ×10 ⁵	
		Thalassiosira	spp.	60 ×10 ⁵	2. 3

調査日: 平成25年 6月 5日

	全個体数		優	· · · · · · · · · · · · · · · · · · ·	成25年 6月 5日
地点	細胞数/m³		種名	細胞数/m³	全個体数に 占める割合
No. 56	$145,000 \times 10^5$	Skeletonema	costatum	$143,000 \times 10^5$	98.6
		Scrippsiella	spp.	950×10^{5}	0.7
		Thalassiosira	spp.	310×10^{5}	0.2
		Gymnodinium	spp.	230×10^{5}	0. 2
		Gyrodinium	spp.	170×10^{5}	0. 1
No. 61	$2,140 \times 10^5$	Pyramimonas	spp.	$1,160 \times 10^{5}$	54. 2
		Gymnodinium	spp.	380×10^{5}	17. 8
		Scrippsiella	spp.	310×10^{5}	14. 5
		Eutreptiella Thalassiosira	sp.	60×10^5	2.8
No. 62	$4,650 \times 10^5$	Skeletonema	spp.	$\begin{array}{c} 40 \times 10^5 \\ 2,300 \times 10^5 \end{array}$	49. 5
110.02	1,000 × 10	Pyramimonas	spp.	$1,150 \times 10^{5}$	24. 7
		Scrippsiella	spp.	$\frac{1,100 \times 10^{5}}{400 \times 10^{5}}$	8.6
		Gymnodinium	spp.	280×10^{5}	6.0
		Prorocentrum	minimum	140×10^{5}	3. (
No. 65	14,600 $\times 10^5$	Skeletonema	costatum	$11,900 \times 10^5$	81.5
		Pyramimonas	spp.	$1,110 \times 10^{5}$	7. 6
		Scrippsiella	spp.	580×10^{5}	4.0
		Gyrodinium	spp.	260×10^{5}	1.8
		Protoperidinium	bipes	240×10^{5}	1.6
No. 66	13, 000 $\times 10^5$	Eutreptiella	sp.	$7,000 \times 10^5$	53.8
		Pyramimonas	spp.	$3,400 \times 10^5$	26. 2
		Scrippsiella	spp.	$1,360 \times 10^{5}$	10. 5
		Gymnodinium	spp.	850×10^{5}	6. 5
		Prorocentrum	minimum	220×10^{5}	1. 7
No. 67	7, 320 $\times 10^5$	Pyramimonas	spp.	$3,800 \times 10^5$	51.9
		Eutreptiella	sp.	$1,600 \times 10^{5}$	21.9
		Scrippsiella	spp.	$1,110 \times 10^5$	15. 2
		Skeletonema Prorocentrum	costatum	$\frac{120 \times 10^5}{110 \times 10^5}$	1. 6 1. 5
No. 71	$3,190 \times 10^{5}$	Pyramimonas	minimum spp.	1.140×10^{5}	35. 7
110.11	0, 100 × 10	Eutreptiella	sp.	640×10^{5}	20. 1
		Scrippsiella	spp.	480×10^{5}	15. 0
		Thalassiosira	spp.	310×10^{5}	9. 7
		Prorocentrum	minimum	110×10^{5}	3.4
No. 74	340×10^{5}	Prorocentrum	minimum	90×10^{5}	26. 5
		Nitzschia	spp.	60×10^{5}	17.6
		Eutreptiella	sp.	60×10^{5}	17. 6
		Thalassiosira	spp.	30×10^{5}	8.8
		Scrippsiella	spp.	30×10^{5}	8.8
No. 79	$5,030 \times 10^5$	Pyramimonas	spp.	$2,300 \times 10^5$	45. 7
		Scrippsiella -	spp.	920×10^{5}	18. 3
		Skeletonema	costatum	770×10^{5}	15. 3
		Gymnodinium	spp.	550×10^5	10. 9
N 01	1 490 1405	Gyrodinium	spp.	140×10^5	2. 8
No. 81	$1,430 \times 10^5$	Scrippsiella	spp.	430×10^{5}	30. 1 25. 2
		Skeletonema Eutreptiella	costatum	$\frac{360 \times 10^5}{170 \times 10^5}$	25. 2 11. 9
		Protoperidinium	sp. bipes	160×10^{5}	11. 2
		Pyramimonas	spp.	90×10^{5}	6. 3
No. 82	$1,190 \times 10^{5}$	Pyramimonas	spp.	410×10^{5}	34. 5
	1,100 / 10	Scrippsiella	spp.	250×10^{5}	21. 0
		Gymnodinium	spp.	150×10^{5}	12. 6
		Thalassiosira	spp.	90×10^{5}	7. 6
		Gyrodinium	spp.	90×10^{5}	7. (
No. 83	560×10^{5}	Scrippsiella	spp.	160×10^{5}	28. 6
		Gymnodinium	spp.	100×10^{5}	17.9
		Prorocentrum	minimum	90×10^{5}	16. 1
		Leptocylindrus	minimum	70×10^{5}	12. 5
				50×10^{5}	8. 9

	全個体数				成25年 7月 91
地点	細胞数/m³		種名	— 細胞数/m³	全個体数に 占める割合
No. 56	$845,000 \times 10^5$	Skeletonema	costatum	$799,000 \times 10^5$	<u> 白める割合</u> 94.6
110.00	010,000 × 10	Nitzschia	closterium	$41,100 \times 10^{5}$	4.9
		Leptocylindrus	minimum	$1,200 \times 10^{5}$	0. 1
		Rhizosolenia	stolterfothii	$1,200 \times 10^{5}$ $1,200 \times 10^{5}$	0. 1
		Thalassiosira	spp.	$1,200 \times 10^{5}$ $1,200 \times 10^{5}$	0. 1
No. 61	$1,340,000 \times 10^5$	Skeletonema	costatum	$1,310,000 \times 10^{5}$	97. 8
110. 01	1,010,000 //10	Nitzschia	closterium	$18,300 \times 10^{5}$	1.4
		Thalassiosira	spp.	$1,300 \times 10^{5}$	0. 1
		Nitzschia	pungens	600×10^{5}	0.0
		Navicula	spp.	500×10^{5}	0.0
No. 62	$482,000 \times 10^5$	Skeletonema	costatum	$476,000 \times 10^{5}$	98. 8
110.02	402,000 × 10	Nitzschia	closterium	$3,670 \times 10^{5}$	0. 8
		Ceratium	fusus	800×10^{5}	0. 2
		Nitzschia	pungens	700×10^{5}	0. 2
		Rhizosolenia	stolterfothii		0. (
No. 65	546 000 × 10 ⁵			$\frac{200 \times 10^5}{532,000 \times 10^5}$	
110.00	$546,000 \times 10^5$	Skeletonema Nitzgahia	costatum		97. 4
		Nitzschia	closterium	$9,530 \times 10^5$	1. 7
		Leptocylindrus	minimum pungens	$1,600 \times 10^5$	0. 3
		Nitzschia		800×10^5	0. 1
	5 10.000 5	Ceratium	fusus	600×10^5	0. 1
No. 66	$719,000 \times 10^5$	Skeletonema	costatum	$710,000 \times 10^5$	98. 7
		Nitzschia	closterium	$5,870 \times 10^5$	0.8
		Nitzschia	sigma	$1,000 \times 10^5$	0. 1
		Thalassiosira	spp.	$1,000 \times 10^5$	0.]
		<i>Leptocylindrus</i>	minimum	800×10^{5}	0. 1
No. 67	$1,040,000 \times 10^5$	Skeletonema	costatum	$1,030,000 \times 10^5$	99. (
		Nitzschia	closterium	$8,800 \times 10^5$	0.8
		Thalassiosira	spp.	$3,700 \times 10^5$	0.4
		Chaetoceros	curvisetus	$1,600 \times 10^5$	0. 2
		<i>Leptocylindrus</i>	minimum	700×10^{5}	0. 1
No. 71	$509,000 \times 10^5$	Skeletonema	costatum	$500,000 \times 10^5$	98. 2
		Nitzschia	closterium	$5,870 \times 10^5$	1. 2
		Thalassiosira	spp.	$2,000 \times 10^5$	0.4
		Rhizosolenia	stolterfothii	400×10^{5}	0.]
		Nitzschia	pungens	300×10^{5}	0. 1
No. 74	$363,000 \times 10^5$	Skeletonema	costatum	$362,000 \times 10^5$	99. 7
		Nitzschia	closterium	800×10^{5}	0. 2
		Thalassiosira	spp.	200×10^{5}	0. 1
		Rhizosolenia	stolterfothii	100×10^{5}	0. (
		Ceratium	fusus	100×10^{5}	0. (
No. 79	926, 000 $\times 10^5$	Skeletonema	costatum	883, 000 $\times 10^5$	95. 4
		Nitzschia	closterium	$38,900 \times 10^5$	4. 2
		Nitzschia	pungens	$1,500 \times 10^{5}$	0. 2
		Leptocylindrus	minimum	600×10^{5}	0.]
		Rhizosolenia	stolterfothii	500×10^{5}	0.]
No. 81	$465,000 \times 10^5$	Skeletonema	costatum	$458,000 \times 10^5$	98. 5
		Nitzschia	closterium	$4,400 \times 10^{5}$	0.9
		Nitzschia	pungens	800×10^{5}	0. 2
		Thalassiosira	spp.	800×10^{5}	0. 2
		Ceratium	fusus	400×10^{5}	0.]
No. 82	$341,000 \times 10^5$	Skeletonema	costatum	$339,000 \times 10^{5}$	99. 4
	, ~~ ~ 10	Thalassiosira	spp.	$1,100 \times 10^{5}$	0. 3
		Nitzschia	closterium	700×10^{5}	0. 2
		Gymnodinium	spp.	100×10^{5}	0. (
		Protoperidinium		100×10^{5} 100×10^{5}	0. (
No. 83	$224,000 \times 10^{5}$	-	spp.	100×10^{5} $220,000 \times 10^{5}$	
110.00	224, 000 × 10°	Skeletonema Nitaashis	costatum	~~~~~	98. 2
		Nitzschia	pungens	$1,200 \times 10^5$	0. 5
		Nitzschia	closterium	$1,000 \times 10^5$	0.4
		Leptocylindrus Thalassiosira	minimum	$700 \times 10^{5} 400 \times 10^{5}$	0. 3
			spp.		

調査日: 平成25年 8月 1日

	全個体数		,	優占種	
地点	細胞数/m³		種名	細胞数/m³	全個体数に 占める割合
No. 56	$36,700 \times 10^5$	Chaetoceros	spp.	$15,100 \times 10^5$	41. 1
		Thalassiosira	spp.	$8,600 \times 10^5$	23. 4
		Cerataulina	dentata	$4,400 \times 10^5$	12. 0
		Chaetoceros	distans	$4,400 \times 10^5$	12. 0
		Skeletonema	costatum	$3,200 \times 10^5$	8. 7
No. 61	$51,300 \times 10^5$	Chaetoceros	spp.	$43,900 \times 10^5$	85. 6
		Chaetoceros	distans	$4,600 \times 10^5$	9. 0
		Cerataulina	dentata	$1,000 \times 10^5$	1. 9
		Ceratium	furca	780×10^{5}	1. 5
		Nitzschia	pungens	400×10^{5}	0.8
No. 62	$28,400 \times 10^5$	Chaetoceros	spp.	$16,400 \times 10^5$	57. 7
		Chaetoceros	distans	$8,600 \times 10^5$	30. 3
		Cerataulina	dentata	$1,600 \times 10^5$	5. 6
		Nitzschia	sigma	800×10^{5}	2.8
		Thalassiosira	spp.	600×10^{5}	2. 1
No. 65	$42,500 \times 10^5$	Chaetoceros	spp.	$32,800 \times 10^5$	77. 2
		Chaetoceros	distans	$4,400 \times 10^5$	10. 4
		Cerataulina	dentata	$3,800 \times 10^{5}$	8.9
		Leptocylindrus	minimum	600×10^{5}	1.4
		Ebria	tripartita	400×10^{5}	0.9
No. 66	$22,700 \times 10^{5}$	Chaetoceros	distans	8, 100 $\times 10^5$	35. 7
		Chaetoceros	spp.	$7,500 \times 10^5$	33. 0
		Nitzschia	pungens	$3,600 \times 10^5$	15. 9
		Leptocylindrus	minimum	$1,500 \times 10^{5}$	6. 6
		Nitzschia	sigma	$1,000 \times 10^5$	4.4
No. 67	75, 500 $\times 10^5$	Chaetoceros	spp.	$29,200 \times 10^{5}$	38. 7
		Chaetoceros	distans	$27,800 \times 10^5$	36.8
		Skeletonema	costatum	$9,400 \times 10^{5}$	12. 5
		Chaetoceros	compressus	$2,800 \times 10^5$	3. 7
		Thalassiosira	spp.	$2,100 \times 10^{5}$	2. 8
No. 71	$56,800 \times 10^5$	Chaetoceros	distans	$41,400 \times 10^5$	72. 9
	, ,,,,,,,,	Chaetoceros	spp.	$13,500 \times 10^5$	23. 8
		Nitzschia	pungens	$1,200 \times 10^{5}$	2. 1
		Skeletonema	costatum	400×10^{5}	0. 7
		Nitzschia	spp.	200×10^{5}	0. 4
No. 74	$2,810 \times 10^5$	Skeletonema	costatum	$1,270 \times 10^{5}$	45. 2
	_, , .10	Chaetoceros	spp.	460×10^{5}	16. 4
		Nitzschia	spp.	430×10^{5}	15. 3
		Leptocylindrus	minimum	340×10^{5}	12. 1
		Chaetoceros	distans	140×10^{5}	5. (
No. 79	$47,600 \times 10^5$	Chaetoceros	spp.	$40,000 \times 10^5$	84. 0
110110	11,000 //10	Chaetoceros	distans	$3,800 \times 10^{5}$	8. (
		Cerataulina	dentata	$2,400 \times 10^{5}$	5. (
		Leptocylindrus	minimum	$\frac{2,100 \times 10^{5}}{500 \times 10^{5}}$	1. 1
		Thalassiosira	spp.	400×10^{5}	0. 8
No. 81	$9,320 \times 10^{5}$	Chaetoceros		$4,800 \times 10^{5}$	51. 5
NO. 01	3, 320 × 10	Chaetoceros	spp. distans	$3,200 \times 10^{5}$	34. 3
		Nitzschia	pungens	$1,300 \times 10^{5}$	13. 9
		Dinophysis	acuminata	10×10^{5}	0. 1
			micans		
No. 82	$12,300 \times 10^{5}$	Prorocentrum Chaetoceros		$ \begin{array}{c c} 10 \times 10^5 \\ 9,500 \times 10^5 \end{array} $	0. I
110.04	12, 500 × 10°	Chaetoceros	spp.		
		Chaetoceros	distans	$1,800 \times 10^5$	14. 6
		Nitzschia	sigma	300×10^5	2. 4
		Nitzschia	spp.	300×10^{5}	2. 4
N OC	0.050	Thalassiosira	spp.	300×10^{5}	2.
No. 83	$3,870 \times 10^5$	Skeletonema	costatum	$2,580 \times 10^5$	66.
		Nitzschia	spp.	360×10^{5}	9. 3
		Leptocylindrus	minimum	240×10^{5}	6. 2
		Chaetoceros	distans	150×10^{5}	3. 9
		Nitzschia	pungens	150×10^{5}	3. 9

調査日:平成25年 9月13日

	全個体数		優占種		成25年 9月13日
地点	細胞数/m³		種名	細胞数/m³	全個体数に 占める割合
No. 56	$132,000 \times 10^5$	Chaetoceros	spp.	$62,500 \times 10^5$	47. 3
		Thalassiosira	spp.	$35,100 \times 10^5$	26. 6
		Nitzschia	sigma	$17,900 \times 10^5$	13. 6
		Nitzschia	spp.	$5,420 \times 10^5$	4. 1
		Thalassionema	nitzschioides	$3,770 \times 10^5$	2. 9
No. 61	$82,900 \times 10^5$	Chaetoceros	spp.	$60,000 \times 10^5$	72.4
		Thalassiosira	spp.	$13,400 \times 10^5$	16. 2
		Skeletonema	costatum	$2,480 \times 10^5$	3. 0 2. 5
		Nitzschia Thalassionema	spp. nitzschioides	$\begin{array}{c} 2,060 \times 10^5 \\ 2,060 \times 10^5 \end{array}$	2. 5
No. 62	65, 200 $\times 10^5$	Chaetoceros	spp.	$40,600 \times 10^{5}$	62. 3
110.02	00, 200 × 10	Thalassiosira	spp.	$9,500 \times 10^{5}$	14. 6
		Nitzschia	spp.	$3,200 \times 10^{5}$	4.9
		Thalassionema	nitzschioides	$3,100 \times 10^{5}$	4.8
		Chaetoceros	curvisetus	$2,060 \times 10^{5}$	3. 2
No. 65	$154,000 \times 10^5$	Chaetoceros	spp.	$82,800 \times 10^5$	53. 8
		Thalassiosira	spp.	$45,200 \times 10^5$	29. 4
		Thalassionema	nitzschioides	$12,700 \times 10^5$	8. 2
		Nitzschia	spp.	$5,580 \times 10^5$	3. 6
		Nitzschia	sigma	$4,570 \times 10^5$	3.0
No. 66	$35,600 \times 10^5$	Chaetoceros	spp.	$30,200 \times 10^5$	84.8
		Thalassiosira	spp.	$1,900 \times 10^5$	5. 3
		Nitzschia	sigma	$1,600 \times 10^5$	4. 5
		Chaetoceros	curvisetus	$1,200 \times 10^5$	3. 4
		Chaetoceros	decipiens	400×10^{5}	1.1
No. 67	94, 500 $\times 10^5$	Chaetoceros	spp.	$56,100 \times 10^5$	59. 4
		Chaetoceros	curvisetus	$21,000 \times 10^5$	22. 2
		Thalassiosira	spp.	$13,200 \times 10^5$	14. 0
		Nitzschia	spp.	$3,090 \times 10^5$	3.3
N - 71	42,000,005	Chaetoceros	decipiens	830 ×10 ⁵	0.9
No. 71	$43,000 \times 10^5$	Chaetoceros	spp.	$35,900 \times 10^{5}$ $2,300 \times 10^{5}$	83. 5 5. 3
		Thalassiosira Chaetoceros	spp. curvisetus	$1,700 \times 10^{5}$	4. 0
		Nitzschia	spp.	$1,600 \times 10^{5}$	3. 7
		Lauderia	borealis	500×10^{5}	1. 2
No. 74	$25,900 \times 10^5$	Chaetoceros	spp.	$12,700 \times 10^{5}$	49. 0
	, /\10	Skeletonema	costatum	$6,600 \times 10^5$	25. 5
		Chaetoceros	curvisetus	$3,000 \times 10^5$	11.6
		Nitzschia	spp.	$2,100 \times 10^{5}$	8. 1
		Thalassiosira	spp.	$1,400 \times 10^{5}$	5.4
No. 79	89, 700 $\times 10^5$	Chaetoceros	spp.	$53,600 \times 10^5$	59.8
		Thalassiosira	spp.	$16,500 \times 10^5$	18.4
		Leptocylindrus	minimum	$4,540 \times 10^5$	5. 1
		Nitzschia	sigma	$4,540 \times 10^5$	5. 1
		Chaetoceros	curvisetus	$3,090 \times 10^5$	3. 4
No. 81	$85,200 \times 10^5$	Chaetoceros	spp.	$52,200 \times 10^5$	61.3
		Thalassiosira	spp.	$19,800 \times 10^5$	23. 2
		Nitzschia	spp.	$9,000 \times 10^5$	10.6
		Nitzschia	sigma hinas	$1,400 \times 10^5$	1.6
No. 82	19, 200 $\times 10^5$	Protoperidinium Chaptocoros	bipes	800×10^{5} $13,200 \times 10^{5}$	0. 9 68. 8
110.04	19, 400 × 10°	Chaetoceros Chaetoceros	spp. curvisetus	$3,400 \times 10^{5}$	17. 7
		Nitzschia	spp.	800×10^{5}	4. 2
		Thalassiosira	spp.	800×10^{5}	4. 2
		Lauderia	borealis	600×10^{5}	3. 1
No. 83	$11,600 \times 10^5$	Skeletonema	costatum	$3,500 \times 10^{5}$	30. 2
	, 200 / 10	Thalassiosira	spp.	$3,000 \times 10^{5}$	25. 9
		Leptocylindrus	minimum	$1,800 \times 10^{5}$	15. 5
		Chaetoceros	spp.	$1,600 \times 10^5$	13.8
		Nitzschia	spp.	$1,600 \times 10^{5}$	13.8

調査日: 平成25年10月 7日

	全個体数		優占種	<u> </u>	
地点	細胞数/m³		種名	細胞数/m³	全個体数に 占める割合
No. 56	$270,000 \times 10^{5}$	Nitzschia	spp.	$107,000 \times 10^5$	39.
		Skeletonema	costatum	77, 100 $\times 10^5$	28. (
		Leptocylindrus	minimum	$29,700 \times 10^5$	11. (
		Chaetoceros	spp.	$25,800 \times 10^5$	9. (
		Chaetoceros	pseudocurvisetus	$11,700 \times 10^5$	4. 3
No. 61	198, 000 $\times 10^5$	Nitzschia	spp.	$112,000 \times 10^5$	56. (
		Skeletonema	costatum	$34,500 \times 10^5$	17.
		<i>Leptocylindrus</i>	minimum	$30,300 \times 10^5$	15.
		Chaetoceros	spp.	$6,840 \times 10^5$	3.
		Thalassiosira	spp.	$4,400 \times 10^5$	2.
No. 62	$129,000 \times 10^5$	Nitzschia	spp.	$57,700 \times 10^5$	44.
		Skeletonema	costatum	$30,100 \times 10^5$	23.
		<i>Leptocylindrus</i>	minimum	$18,800 \times 10^5$	14.
		Chaetoceros	pseudocurvisetus	$12,700 \times 10^5$	9.
		Chaetoceros	spp.	$5,380 \times 10^5$	4.
No. 65	$368,300 \times 10^5$	Chaetoceros	spp.	$209,000 \times 10^5$	56.
		Nitzschia	spp.	48, 100 $\times 10^5$	13.
		Skeletonema	costatum	$47,100 \times 10^5$	12.
		Thalassiosira	spp.	$36,100 \times 10^5$	9.
		Leptocylindrus	minimum	$19,200 \times 10^5$	5.
No. 66	43, 100 $\times 10^5$	Nitzschia	spp.	$14,000 \times 10^5$	32.
		Leptocylindrus	minimum	$13,900 \times 10^5$	32.
		Skeletonema	costatum	$8,400 \times 10^5$	19.
		Chaetoceros	spp.	$3,800 \times 10^5$	8.
		Thalassiosira	spp.	$1,200 \times 10^5$	2.
No. 67	$37,200 \times 10^5$	Nitzschia	spp.	$17,700 \times 10^5$	47.
		Leptocylindrus	minimum	$7,800 \times 10^5$	21.
		Chaetoceros	spp.	$4,700 \times 10^5$	12.
		Chaetoceros	pseudocurvisetus	$2,500 \times 10^5$	6.
		Skeletonema	costatum	$2,400 \times 10^5$	6.
No. 71	$32,400 \times 10^5$	Leptocylindrus	minimum	$11,100 \times 10^5$	34.
		Nitzschia	spp.	$10,200 \times 10^5$	31.
		Chaetoceros	spp.	$9,300 \times 10^5$	28.
		Thalassiosira	spp.	$1,100 \times 10^5$	3.
		Nitzschia	sigma	300×10^{5}	0.
No. 74	$32,700 \times 10^5$	Nitzschia	spp.	$12,700 \times 10^5$	38.
		Chaetoceros	spp.	$11,400 \times 10^5$	34.
		Leptocylindrus	minimum	$4,500 \times 10^5$	13.
		Skeletonema	costatum	$2,500 \times 10^5$	7.
		Nitzschia	closterium	500×10^{5}	1.
No. 79	$171,000 \times 10^5$	Nitzschia	spp.	$103,000 \times 10^5$	60.
		Skeletonema	costatum	$26,400 \times 10^5$	15.
		Leptocylindrus	minimum	$24,000 \times 10^5$	14.
		Chaetoceros	spp.	$8,510 \times 10^5$	5.
		Thalassiosira	spp.	$3,650 \times 10^5$	2.
No. 81	$275,000 \times 10^{5}$	Chaetoceros	spp.	$200,000 \times 10^{5}$	72.
		Nitzschia	spp.	$33,000 \times 10^5$	12.
		Skeletonema	costatum	$23,100 \times 10^{5}$	8.
		Thalassiosira	spp.	$8,800 \times 10^5$	3.
		Leptocylindrus	minimum	$6,050 \times 10^5$	2.
No. 82	$22,400 \times 10^5$	Skeletonema	costatum	$7,700 \times 10^5$	34.
		Nitzschia	spp.	$6,300 \times 10^5$	28.
		<i>Leptocylindrus</i>	minimum	$5,300 \times 10^5$	23.
		Chaetoceros	spp.	$1,800 \times 10^5$	8.
		Thalassiosira	spp.	800×10^{5}	3.
No. 83	$71,800 \times 10^5$	Nitzschia	spp.	$26,600 \times 10^5$	37.
	,	Leptocylindrus	minimum	$21,700 \times 10^5$	30.
		Chaetoceros	spp.	$13,300 \times 10^{5}$	18.
		Skeletonema	costatum	$6,700 \times 10^{5}$	9.
		Thalassiosira	spp.	$2,500 \times 10^5$	3.
			* *	-, /\ 10	0.

	全個体数				成25年11月12日
地点	細胞数/m³		種名	細胞数/m³	全個体数に 占める割合
No. 56	530×10^{5}	Dictyocha	fibula	350×10^{5}	66.0
		Distephanus	speculum	120×10^{5}	22. 6
		Skeletonema	costatum	40×10^{5}	7. 5
		Ebria	tripartita	10×10^{5}	1.9
		Chaetoceros	sp.	10×10^{5}	1. 9
No. 61	290×10^{5}	Skeletonema	costatum	170×10^{5}	58.6
		Dictyocha	fibula	60×10^{5}	20. 7
		Lithodesmium	variable	20×10^{5}	6. 9
		Thalassionema	nitzschioides	20×10^{5}	6. 9
		Distephanus	speculum	20×10^{5}	6. 9
No. 62	260×10^{5}	Dictyocha	fibula	160×10^{5}	61. 5
		Lithodesmium	variable	30×10^{5}	11. 5
		Cyclotella	spp.	20×10^{5}	7. 7
		Eucampia	zoodiacus	20×10^{5}	7. 7
		Distephanus	speculum	20×10^{5}	7. 7
No. 65	470×10^{5}	Dictyocha	fibula	280×10^{5}	59. 6
		Distephanus	speculum	100×10^{5}	21. 3
		Nitzschia	sigma	40×10^{5}	8. 5
		Cyclotella	spp.	20×10^{5}	4. 3
		Lithodesmium	variable	20×10^{5}	4. 3
No. 66	540×10^{5}	Skeletonema	costatum	210×10^{5}	38. 9
		Lithodesmium	variable variable	160×10^{5}	29. 6
		Chaetoceros	spp.	80×10^{5}	14. 8
		Dictyocha	fibula	50×10^{5}	9. 3
		Distephanus	speculum	20×10^{5}	3. 7
No. 67	940×10^{5}	Skeletonema	costatum	700×10^{5}	74. 5
		Lithodesmium	variable	130×10^{5}	13. 8
		Cyclotella	spp.	40×10^{5}	4. 3
		Thalassiosira	spp.	30×10^{5}	3. 2
		Navicula	spp.	20×10^{5}	2. 1
No. 71	$1,890 \times 10^5$	Skeletonema	costatum	$1,330 \times 10^5$	70. 4
		Lithodesmium	variable variable	300×10^{5}	15. 9
		Thalassionema	nitzschioides	120×10^{5}	6. 3
		Navicula	spp.	50×10^{5}	2. 6
		Dictyocha	fibula	40×10^{5}	2. 1
No. 74	280×10^{5}	Lithodesmium	variable	150×10^{5}	53. 6
		Lauderia	borealis	40×10^{5}	14. 3
		Thalassiosira	spp.	40×10^{5}	14. 3
		Actinoptychus	undulatus	20×10^{5}	7. 1
		Coscinodiscus	sp.	20×10^{5}	7. 1
No. 79	670×10^5	Dictyocha	fibula	520×10^{5}	77. 6
		Distephanus	speculum	110×10^{5}	16. 4
		Gyrodinium	sp.	20×10^{5}	3. 0
		Ebria	tripartita	10×10^{5}	1. 5
		Gymnodinium	sp.	10×10^{5}	1. 5
No. 81	240×10^{5}	Dictyocha	fibula	190×10^{5}	79. 2
		Thalassiosira	spp.	20×10^{5}	8. 3
		Coscinodiscus	sp.	10×10^{5}	4. 2
		Lithodesmium	variable	10×10^{5}	4. 2
		Gymnodinium	sp.	10×10^{5}	4. 2
No. 82	620×10^{5}	Skeletonema	costatum	350×10^{5}	56. 5
		Lithodesmium	variable	90 ×10 ⁵	14. 5
		Thalassionema	nitzschioides	60×10^{5}	9. 7
		Thalassiosira	spp.	60×10^{5}	9. 7
		Dictyocha	fibula	20×10^{5}	3. 2
No. 83	180×10^{5}	Lithodesmium	variable	60×10^{5}	33. 3
		Skeletonema	costatum	40×10^{5}	22. 2
		Coscinodiscus	sp.	20×10^{5}	11. 1
		Thalassionema	nitzschioides	20×10^{5}	11. 1
		Dictyocha	fibula	20×10^{5}	11. 1

	全個体数		優占種	調査日: 半月	成25年12月 5日
地点	<u> </u>		種名	細胞数/m³	全個体数に
		Cl. 1 d			占める割合
No. 56	$523,000 \times 10^5$	Skeletonema Chaetoceros	costatum	$493,000 \times 10^{5}$ $22,200 \times 10^{5}$	94. 3
		Chaetoceros	curvisetus decipiens	$4,800 \times 10^{5}$	0.9
		Chaetoceros	socialis	$1,100 \times 10^{5}$	0. 9
		Chaetoceros	didymus	900×10^{5}	0. 2
No. 61	$312,000 \times 10^{5}$	Skeletonema	costatum	$297,000 \times 10^{5}$	95. 2
110.01	012,000 × 10	Chaetoceros	curvisetus	$8,700 \times 10^{5}$	2.8
		Chaetoceros	decipiens	$2,100 \times 10^5$	0. 7
		Navicula	spp.	$1,700 \times 10^5$	0. 5
		Chaetoceros	socialis	$1,300 \times 10^{5}$	0.4
No. 62	$304,000 \times 10^5$	Skeletonema	costatum	$284,000 \times 10^5$	93. 4
		Chaetoceros	curvisetus	$14,100 \times 10^5$	4.6
		Chaetoceros	decipiens	$3,600 \times 10^5$	1.2
		Chaetoceros	spp.	$2,200 \times 10^5$	0. 7
		<i>Navicula</i>	spp.	300×10^{5}	0. 1
No. 65	$434,000 \times 10^5$	Skeletonema	costatum	$409,000 \times 10^5$	94. 2
		Chaetoceros	curvisetus	$20,400 \times 10^{5}$	4. 7
		Chaetoceros	decipiens	$1,800 \times 10^5$	0.4
		Chaetoceros	socialis	$1,000 \times 10^5$	0. 2
N CC	604.0005	Eucampia	zoodiacus	700×10^5	0. 2
No. 66	$684,000 \times 10^5$	Skeletonema	costatum	$640,000 \times 10^5$	93.6
		Chaetoceros Chaetoceros	curvisetus socialis	$ \begin{array}{c} 36,300 \times 10^5 \\ 1,800 \times 10^5 \end{array} $	5. 3 0. 3
		Chaetoceros	decipiens	$1,800 \times 10$ $1,700 \times 10^5$	0. 3
		Navicula		$1,300 \times 10^{5}$ $1,300 \times 10^{5}$	0. 2
No. 67	$366,000 \times 10^5$	Skeletonema	spp. costatum	$332,000 \times 10^{5}$	90. 7
110.01	000,000 //10	Chaetoceros	curvisetus	$28,800 \times 10^{5}$	7. 9
		Chaetoceros	decipiens	$2,400 \times 10^5$	0. 7
		Chaetoceros	spp.	$1,000 \times 10^5$	0.3
		Chaetoceros	socialis	500×10^{5}	0.1
No. 71	$234,000 \times 10^{5}$	Skeletonema	costatum	$218,000 \times 10^{5}$	93. 2
		Chaetoceros	curvisetus	$12,700 \times 10^5$	5. 4
		Chaetoceros	decipiens	$1,000 \times 10^5$	0.4
		Chaetoceros	socialis	700×10^{5}	0.3
		Navicula	spp.	600×10^{5}	0.3
No. 74	71, 100 $\times 10^5$	Skeletonema	costatum	63, 800 $\times 10^5$	89. 7
		Chaetoceros	curvisetus	$5,700 \times 10^5$	8. 0
		Chaetoceros	decipiens	$1,000 \times 10^5$	1. 4
		Chaetoceros	spp.	300×10^5	0. 4
N 70	450,000,0105	Actinoptychus	undulatus	200×10^{5}	0.3
No. 79	$458,000 \times 10^5$	Skeletonema Chastasanas	costatum curvisetus	$\frac{417,000 \times 10^5}{35,900 \times 10^5}$	91. 0 7. 8
		Chaetoceros Nitzschia	sigma	$1,500 \times 10^{5}$	0. 3
		Chaetoceros	decipiens	$1,300 \times 10$ $1,400 \times 10^{5}$	0. 3
		Chaetoceros	socialis	800×10^{5}	0. 2
No. 81	$232,000 \times 10^{5}$	Skeletonema	costatum	$216,000 \times 10^{5}$	93. 1
1.0.01	202,000 //10	Chaetoceros	curvisetus	$11,000 \times 10^5$	4. 7
		Chaetoceros	decipiens	$1,600 \times 10^5$	0. 7
		Chaetoceros	didymus	$1,100 \times 10^5$	0.5
		Nitzschia	sigma	800 ×10 ⁵	0. 3
No. 82	441,000 $\times 10^5$	Skeletonema	costatum	$395,000 \times 10^5$	89. 6
		Chaetoceros	curvisetus	$42,000 \times 10^5$	9. 5
		Chaetoceros	decipiens	$2,500 \times 10^5$	0.6
		Chaetoceros	socialis	900×10^{5}	0.2
		Navicula	spp.	500×10^{5}	0.1
No. 83	$1,620 \times 10^5$	Skeletonema	costatum	$1,210 \times 10^{5}$	74. 7
		Chaetoceros	curvisetus	190×10^{5}	11. 7
		Rhizosolenia	imbricata v. shrubsol	70×10^{5}	4. 3
		Chaetoceros	decipiens	30×10^5	1.9
		Thalassiosira	spp.	30×10^{5}	1. 9

	全個体数				成26年 1月14日
地点	細胞数/m³		種名	細胞数/m³	全個体数に 占める割合
No. 56	$205,000 \times 10^5$	Skeletonema	costatum	$201,000 \times 10^5$	98. 0
		Chaetoceros	curvisetus	$2,170 \times 10^5$	1. 1
		Asterionella	gracillima	300×10^{5}	0.1
		Chaetoceros	spp.	300×10^{5}	0. 1
27 04	400 000 5	Navicula	spp.	150×10^{5}	0. 1
No. 61	$162,000 \times 10^5$	Skeletonema	costatum	$160,000 \times 10^5$	98.8
		Chaetoceros	curvisetus	$1,310 \times 10^5$	0.8
		Chaetoceros Navicula	didymus	$\frac{90 \times 10^5}{90 \times 10^5}$	0.1
		Rhizosolenia	spp. delicatula	60×10^{5}	0. 0
No. 62	$260,000 \times 10^5$	Skeletonema	costatum	$257,000 \times 10^{5}$	98.8
110.02	200,000 / 10	Chaetoceros	curvisetus	$2,650 \times 10^{5}$	1.0
		Chaetoceros	socialis	200×10^{5}	0. 1
		Thalassiosira	spp.	190×10^{5}	0. 1
		Navicula	spp.	110×10^{5}	0.0
No. 65	$164,000 \times 10^5$	Skeletonema	costatum	$162,000 \times 10^5$	98.8
No. 56 No. 61 No. 62 No. 65 No. 67 No. 71 No. 74 No. 79		Chaetoceros	curvisetus	$1,130 \times 10^{5}$	0. 7
		Asterionella	gracillima	240×10^{5}	0. 1
		Detonula	pumila	200×10^{5}	0. 1
		Navicula	spp.	190×10^{5}	0. 1
No. 66	$200,000 \times 10^{5}$	Skeletonema	costatum	$198,000 \times 10^5$	99.0
		Chaetoceros	curvisetus	$1,170 \times 10^5$	0.6
		Chaetoceros	socialis	170×10^{5}	0. 1
		Navicula	spp.	90×10^{5}	0.0
		Rhizosolenia	delicatula	90×10^{5}	0.0
No. 67	$278,000 \times 10^5$	Skeletonema	costatum	$275,000 \times 10^5$	98. 9
		Chaetoceros	curvisetus	$2,070 \times 10^5$	0. 7
		Thalassiosira	spp.	300×10^{5}	0. 1
		Chaetoceros	socialis	150×10^{5}	0.1
N: 71	105.0005	Synedra	spp.	60 ×10 ⁵	0.0
No. / 1	$105,000 \times 10^5$	Skeletonema	costatum	$105,000 \times 10^5$	100.0
		Chaetoceros	curvisetus	350×10^5	0. 3
		Chaetoceros Chaetoceros	socialis	$\frac{200 \times 10^5}{150 \times 10^5}$	0. 2
		Thalassiosira	spp.	70×10^{5}	0. 1
No. 74	$1,690 \times 10^{5}$	Skeletonema	spp.	$1,580 \times 10^{5}$	93. 8
110.14	1,000 × 10	Chaetoceros	curvisetus	70×10^{5}	4.]
		Rhizosolenia	delicatula	20×10^{5}	1. 2
		Dinophysis	caudata	$\frac{20 \times 10^{5}}{10 \times 10^{5}}$	0. 6
		Protoperidinium	spp.	10×10^{5}	0. 6
No. 79	$210,000 \times 10^{5}$	Skeletonema	costatum	$207,000 \times 10^5$	98. 6
	,	Chaetoceros	curvisetus	$1,940 \times 10^{5}$	0.9
		Chaetoceros	spp.	440×10^{5}	0. 2
		Chaetoceros	radicans	220×10^{5}	0. 1
		Chaetoceros	socialis	220×10^{5}	0. 1
No. 81	$176,000 \times 10^{5}$	Skeletonema	costatum	$174,000 \times 10^5$	98.9
		Asterionella	gracillima	570×10^{5}	0.3
		Chaetoceros	curvisetus	330×10^{5}	0.2
		Chaetoceros	spp.	330×10^{5}	0. 2
		Thalassionema	nitzschioides	70×10^{5}	0.0
No. 82	$287,000 \times 10^{5}$	Skeletonema	costatum	$283,000 \times 10^{5}$	98. 6
		Chaetoceros	curvisetus	$2,870 \times 10^5$	1. (
		Chaetoceros	spp.	370×10^{5}	0. 1
		Navicula	spp.	200×10^{5}	0. 1
		Nitzschia	spp.	190×10^{5}	0. 1
No. 83	$11,700 \times 10^5$	Skeletonema	costatum	$10,700 \times 10^5$	91. 5
		Chaetoceros	curvisetus	720×10^{5}	6. 2
		Thalassiosira	spp.	130×10^{5}	1. 1
		Navicula	spp.	90 ×10 ⁵	0.8
		Rhizosolenia	delicatula	40×10^{5}	0.3

	全個体数		優占種	<u> </u>	
地点	細胞数/m³		種名	細胞数/m³	全個体数に 占める割合
No. 56	34, 800 $\times 10^5$	Skeletonema	costatum	$34,500 \times 10^5$	99.
		Chaetoceros	didymus	90×10^{5}	0.
		Gymnodinium	spp.	60×10^{5}	0.
		Thalassionema	nitzschioides	40×10^{5}	0.
		Navicula	spp.	30×10^{5}	0.
No. 61	44, 900 $\times 10^5$	Skeletonema	costatum	$44,200 \times 10^5$	98.
		Chaetoceros	spp.	570×10^{5}	1.
		Chaetoceros	radicans	60×10^{5}	0.
		Navicula	spp.	20×10^{5}	0.
		Gymnodinium	spp.	20×10^{5}	0.
No. 62	49, 400 $\times 10^5$	Skeletonema	costatum	$48,700 \times 10^5$	98.
		Chaetoceros	spp.	230×10^{5}	0.
		Gymnodinium	spp.	140×10^{5}	0.
		Nitzschia	pungens	110×10^{5}	0.
		Eucampia	zoodiacus	80×10^{5}	0.
No. 65	43, 900 $\times 10^5$	Skeletonema	costatum	$43,200 \times 10^5$	98.
		Chaetoceros	spp.	560×10^{5}	1.
		Chaetoceros	decipiens	30×10^{5}	0.
		Gymnodinium	spp.	30×10^{5}	0.
		Scrippsiella	spp.	30×10^{5}	0.
No. 66	39, 400 $\times 10^5$	Skeletonema	costatum	39, 100 $\times 10^5$	99.
		Eucampia	zoodiacus	100×10^{5}	0.
		Chaetoceros	spp.	90×10^{5}	0.
		Thalassiosira	spp.	40×10^{5}	0.
		Chaetoceros	decipiens	30×10^{5}	0.
No. 67	$1,800 \times 10^5$	Skeletonema	costatum	$1,730 \times 10^5$	96.
		Gymnodinium	spp.	30×10^{5}	1.
		Navicula	spp.	20×10^{5}	1.
		Eucampia	zoodiacus	10×10^{5}	0.
		Protoperidinium	sp.	10×10^{5}	0.
No. 71	650×10^{5}	Skeletonema	costatum	570×10^{5}	87.
		Gymnodinium	spp.	40×10^{5}	6.
		Eucampia	zoodiacus	20×10^{5}	3.
		Navicula	sp.	10×10^{5}	1.
		Protoperidinium	sp.	10×10^{5}	1.
No. 74	$1,510 \times 10^5$	Skeletonema	costatum	$1,460 \times 10^5$	96.
		Gymnodinium	spp.	20×10^{5}	1.
		Nitzschia	sp.	10×10^{5}	0.
		Thalassiosira	sp.	10×10^{5}	0.
		Eutreptiella	sp.	10×10^{5}	0.
No. 79	65, 300 $\times 10^5$	Skeletonema	costatum	$65,000 \times 10^5$	99.
		Nitzschia	pungens	120×10^{5}	0.
		Chaetoceros	spp.	70×10^{5}	0.
		Gymnodinium	spp.	40×10^{5}	0.
		Thalassionema	nitzschioides	20×10^{5}	0.
No. 81	$58,800 \times 10^5$	Skeletonema	costatum	$58,300 \times 10^5$	99.
		Chaetoceros	spp.	160×10^{5}	0.
		Chaetoceros	didymus	140×10^{5}	0.
		Gymnodinium	spp.	110×10^{5}	0.
		Rhizosolenia	fragilissima	30×10^{5}	0.
No. 82	$34,400 \times 10^5$	Skeletonema	costatum	$34,000 \times 10^5$	98.
		Chaetoceros	spp.	260×10^{5}	0.
		Chaetoceros	decipiens	60×10^{5}	0.
		Gymnodinium	spp.	40×10^{5}	0.
		Rhizosolenia	fragilissima	30×10^{5}	0.
No. 83	3, 610 $\times 10^5$	Skeletonema	costatum	$3,540 \times 10^{5}$	98.
		Eucampia	zoodiacus	40×10^{5}	1.
		Ebria	tripartita	10×10^{5}	0.
		Gymnodinium	sp.	10×10^{5}	0.
		Scrippsiella		10×10^{5}	0.

調査日:平成26年 3月11日

	全個体数				成26年 3月11日
地点	細胞数/m³		種名	細胞数/m³	全個体数に 占める割合
No. 56	$132,000 \times 10^5$	Skeletonema	costatum	$121,000 \times 10^{5}$	91.7
		Thalassiosira	spp.	$2,500 \times 10^5$	1. 9
		Chaetoceros	spp.	$2,300 \times 10^5$	1. 7
		Chaetoceros	didymus	$2,000 \times 10^5$	1. 5
		Eucampia	zoodiacus	$1,300 \times 10^{5}$	1. 0
No. 61	$116,000 \times 10^5$	Skeletonema	costatum	$106,000 \times 10^5$	91. 4
		Thalassiosira	spp.	$3,700 \times 10^5$	3. 2
		Chaetoceros	radicans	$3,600 \times 10^5$	3. 1 0. 9
		Chaetoceros Chaetoceros	didymus	$1,100 \times 10^5$	0.9
No. 62	$78,900 \times 10^5$	Skeletonema	spp. costatum	$ \begin{array}{c c} 700 \times 10^5 \\ \hline 65,900 \times 10^5 \end{array} $	83. 5
110.02	70, 300 × 10	Thalassiosira	spp.	$5,400 \times 10^{5}$	6.8
		Chaetoceros	radicans	$2,900 \times 10^{5}$	3. 7
		Chaetoceros	spp.	$2,200 \times 10^{5}$	2. 8
		Chaetoceros	didymus	$1,300 \times 10^{5}$	1.6
No. 65	$107,000 \times 10^5$	Skeletonema	costatum	96, 100×10^5	89. 8
	, , , , , , ,	Thalassiosira	spp.	$3,700 \times 10^5$	3. 5
		Chaetoceros	radicans	$2,900 \times 10^5$	2. 7
		Chaetoceros	spp.	$1,300 \times 10^{5}$	1. 2
		Chaetoceros	curvisetus	$1,100 \times 10^{5}$	1. 0
No. 66	$41,800 \times 10^{5}$	Skeletonema	costatum	$35,800 \times 10^5$	85. 6
		Chaetoceros	radicans	$3,700 \times 10^5$	8. 9
		Chaetoceros	didymus	$1,200 \times 10^5$	2. 9
		Thalassiosira	spp.	400×10^{5}	1. 0
		Rhizosolenia	fragilissima	200×10^{5}	0. 5
No. 67	$31,200 \times 10^5$	Skeletonema	costatum	$29,400 \times 10^5$	94. 2
		Thalassiosira	spp.	800×10^{5}	2. 6
		Chaetoceros	spp.	370×10^{5}	1. 2
		Eucampia	zoodiacus	210×10^{5}	0. 7
N 71	2 200 5	Chaetoceros	radicans	140×10^{5}	0. 4
No. 71	$6,620 \times 10^5$	Skeletonema	costatum	$5,890 \times 10^5$	89. 0
		Thalassiosira	spp.	370×10^{5}	5. 6
		Chaetoceros	spp. zoodiacus	$\frac{200 \times 10^5}{100 \times 10^5}$	3. 0 1. 5
		Eucampia Chaetoceros	radicans	$\frac{100 \times 10}{40 \times 10^5}$	0.6
No. 74	$11,500 \times 10^5$	Skeletonema	costatum	$10,300 \times 10^{5}$	89. 6
110.14	11,000 × 10	Eucampia	zoodiacus	360×10^{5}	3. 1
		Chaetoceros	spp.	310×10^{5}	2. 7
		Thalassiosira	spp.	240×10^{5}	2. 1
		Nitzschia	pungens	110×10^{5}	1. 0
No. 79	$133,000 \times 10^{5}$	Skeletonema	costatum	$126,000 \times 10^5$	94. 7
		Thalassiosira	spp.	$3,200 \times 10^5$	2. 4
		Chaetoceros	didymus	$1,100 \times 10^{5}$	0.8
		Chaetoceros	radicans	800×10^{5}	0.6
		Chaetoceros	spp.	500×10^{5}	0. 4
No. 81	$48,000 \times 10^5$	Skeletonema	costatum	39, 700 $\times 10^5$	82. 7
		Thalassiosira	spp.	$3,100 \times 10^{5}$	6. 5
		Chaetoceros	spp.	$2,400 \times 10^5$	5. 0
		Nitzschia	pungens	800×10^{5}	1.7
N- 00	06.000	Chaetoceros	radicans	700×10^5	1. 5
No. 82	$26,000 \times 10^5$	Skeletonema Thalassiosira	costatum	$\begin{array}{c} 23,400 \times 10^5 \\ 1,400 \times 10^5 \end{array}$	90. 0 5. 4
		Thalassiosira Chaetoceros	spp. didymus	$\frac{1,400 \times 10^{5}}{300 \times 10^{5}}$	1. 2
		Chaetoceros		300×10^{5}	1. 2
		Eucampia	spp. zoodiacus	200×10^{5}	0.8
No. 83	$2,270 \times 10^{5}$	Skeletonema	costatum	$1,460 \times 10^{5}$	64. 3
1,0,00	2,2.0 \ 10	Eucampia	zoodiacus	370×10^{5}	16. 3
		Thalassiosira	spp.	190×10^{5}	8. 4
		Chaetoceros	spp.	120×10^{5}	5. 3
		Leptocylindrus	danicus	60×10^{5}	2. 6
I					

3. 地下水調査

(1) 調査の概要

平成25年度に実施した地下水調査の概要は、次のとおりである。

表 2-3-1 地下水調査の概要(平成 25 年度)

調査時期	概況調査・継続監視	規調査とも平成 25 年 10 月に実施した。
調査地点 [※]	定した地点(定) ② 継続監視調査: 前年度までの調 おいて、汚染の調 ③ 汚染井戸周辺地	での概況を把握するため、発生源との位置関係を考慮して選点:各区1地点)において経年的な調査を行った。
	一般項目(3項目)	水温、外観、臭気
調査項目	環境基準項目 (28 項目)	カト、ミウム、全シアン、鉛、六価クロム、砒素、総水銀、アルキル水銀、PCB、シ、クロロメタン、四塩化炭素、塩化ビ、ニルモノマー、1,2-シ、クロロエタン、1,1-シ、クロロエチレン、1,2-シ、クロロエチレン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、トリクロロエチレン、テトラクロロエチレン、1,3-シ、クロロプ。ロペ。ン、チウラム、シマシ、ン、チオペ、ンカルフ、、ベ、ンセ、ン、といい、硝酸性窒素及び亜硝酸性窒素、ふっ素、ほう素、1,4-シ、オキサン
WHE XI	要監視項目 (24 項目)	クロロホルム、1,2-ジクロロプロパン、p-ジクロロベンゼン、イソキサチオン、 ダイアジノン、フェニトロチオン、イソプロチオラン、オキシン銅、クロロタロニル、 プロピザミド、EPN、ジクロルホ、ス、フェノブカルフ、、イプロベンホス、 クロルニトロフェン、トルエン、キシレン、フタル酸シ、エチルヘキシル、ニッケル、モリフ、デン、 アンチモン、エピクロロヒドリン、全マンカ、ン、ウラン
	その他の項目	pH、導電率
採水方法	井戸の水面からの[直接採水、又は既設ポンプによる汲み上げ
測定方法等	「地下水の水質汚済	蜀に係る環境基準について」等による(資料編参照)

※調査地点は、表 2-3-2 及び図 2-3-1 を参照。

表 2-3-2 調査地点

概況調査	①東灘区青木	②灘区新在家南町	③中央区坂口通
	④兵庫区中之島	⑤長田区東尻池	⑥須磨区堀池町
	⑦垂水区西舞子	⑧西区玉津町新方	⑨北区淡河町勝雄
継続監視調査 (調査項目)	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		エチレン、トリクロロエチレン)

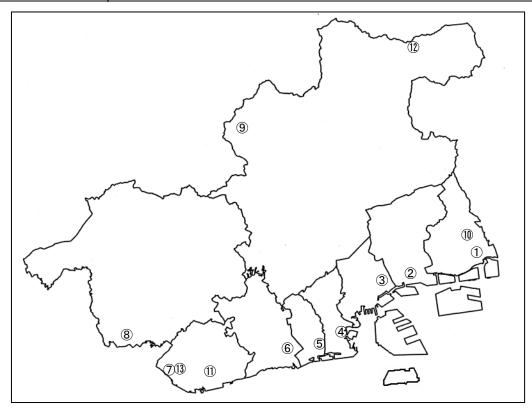


図 2-3-1 地下水の調査地点

(2) 調査結果

① 概況調査

概況調査では、9 地点においてカドミウム等 28 項目を調査した。その結果、全ての地 点、全ての項目において環境基準を達成していた。

また、要監視項目であるクロロホルム等 24 項目についても、3 地点において調査した。 1 地点(⑧西区玉津町新方)で全マンガンが指針値を超過して検出されたが、調査地点の 状況、全国の調査結果などとの比較から、自然由来と推測される。全マンガンを含む要 監視項目については、引き続き知見の集積に努める。

② 継続監視調査

継続監視調査では、4 地点において、以前に環境基準値を超過した項目を調査した。その結果、3 地点(⑩東灘区本山北町は砒素及びふっ素、⑫北区道場町は砒素、ふっ素及びほう素、⑬垂水区舞子台はテトラクロロエチレン)において環境基準値を超過した。砒素、ふっ素及びほう素については、調査地点の状況、ヒアリング等から人為的な汚染とは考えにくい。全国の調査結果などとの比較から自然由来と推測される。これらの地点では今後も継続して監視していく。

③ 污染井戸周辺地区調査

概況調査の結果、全ての地点、全ての項目において環境基準を達成していたため、汚染井戸周辺地区調査は実施していない。

表 2-3-3 調査結果

調査区分	No.	環境基準項目	環境基準値	調査地点数	環境 基準値 超過 地点数	調査結果 (mg/L)
	1	カドミウム	0.003 mg/L以下	9	0	全地点 N. D.
	2	全シアン	検出されないこと	9	0	全地点 N. D.
	3	鉛	0.01 mg/L以下	9	0	全地点 N. D.
	4	六価クロム	0.05 mg/L以下	9	0	全地点 N. D.
	5	砒素	0.01 mg/L以下	9	0	N. D. ∼0. 004
	6	総水銀	0.0005 mg/L以下	9	0	全地点 N. D.
	7	アルキル水銀※	検出されないこと	9	0	全地点 N. D.
	8	РСВ	検出されないこと	9	0	全地点 N. D.
概 - 況 調 _	9	シ゛クロロメタン	0.02 mg/L以下	9	0	全地点 N. D.
	10	四塩化炭素	0.002 mg/L以下	9	0	全地点 N. D.
	11	塩化ビニルモノマー	0.002 mg/L以下	9	0	全地点 N. D.
	12	1, 2-ジクロロエタン	0.004 mg/L以下	9	0	全地点 N. D.
	13	1, 1-ジクロロエチレン	0.1 mg/L以下	9	0	全地点 N. D.
	14	1, 2-ジクロロエチレン	0.04 mg/L以下	9	0	全地点 N. D.
	15	1, 1, 1ートリクロロエタン	1 mg/L以下	9	0	全地点 N. D.
	16	1, 1, 2-トリクロロエタン	0.006 mg/L以下	9	0	全地点 N. D.
1	17	トリクロロエチレン	0.03 mg/L以下	9	0	全地点 N. D.
	18	テトラクロロエチレン	0.01 mg/L以下	9	0	全地点 N. D.
	19	1, 3-ジクロロプロペン	0.002 mg/L以下	9	0	全地点 N. D.
	20	チウラム	0.006 mg/L以下	9	0	全地点 N. D.
	21	১ マ১ ` ソ	0.003 mg/L以下	9	0	全地点 N. D.
	22	チオヘ゛ンカルフ゛	0.02 mg/L以下	9	0	全地点 N. D.
	23	ベンゼン	0.01 mg/L以下	9	0	全地点 N. D.
	24	セレン	0.01 mg/L以下	9	0	全地点 N. D.
	25	硝酸性窒素及び亜硝酸性窒素	10 mg/L以下	9	0	N. D. ∼10
	26	ふっ素	0.8 mg/L以下	9	0	N. D. ∼0. 65
	27	ほう素	1 mg/L以下	9	0	N. D. ∼0. 19
	28	1, 4-ジオキサン	0.05 mg/L以下	9	0	全地点 N. D.
	1	砒素	0.01 mg/L以下	2	2	0.025~0.037
	2	1,2-ジクロロエチレン	0.04 mg/L以下	1	0	0.022
継続監視	3	トリクロロエチレン	0.03 mg/L以下	1	0	0.004
査 監 視	4	テトラクロロエチレン	0.01 mg/L以下	1	1	0.0083~0.038
	5	ふっ素	0.8 mg/L以下	2	2	2.2 ~ 4.1
	6	ほう素	1 mg/L以下	1	1	1.3

N.D.:定量下限值未満

※ アルキル水銀は、総水銀の測定値が定量下限値以上の場合に測定することとされている。

(3) 地点別調査結果

測分	定番号		1	2	3	4	5	6		
調	查区分		概況	概況	概況	概況	概況	概況	環 境	
所	在 地		東灘区	灘 区	中央区	兵庫区	長田区	須磨区	境 基	
			青木	新在家南町	坂口通	中之島	東尻池	堀池町	準	
	区番号		1007	2048	3031	5059	6072	7063	値	
	戸番号		013104	042904	042803	039703	039604	039504	• +5	
井戸		(m)	40	不明	8	不明	不明	不明	指 針	
0)	浅井戸・深井戸の別		深井戸	不明	浅井戸	浅井戸	浅井戸	不明	値	
諸元			ビオトープ	雑用水	雑用水	雑用水	雑用水	雑用水		
	水年月日	(%)				H25. 10. 2			(/ɪ)	
水泊	<u>血</u> カドミウム	(°C) (mg/L)	18. 5 0. 0003>	24. 5 0. 0003>	23. 7 0. 0003>	24. 4 0. 0003>	20.8 0.0003>	22. 7 0. 0003>	(mg/L) 0.003)
	全シアン	(mg/L)	0. 00037	0. 1>	0. 1>	0. 00037	0. 00037	0. 00037	不検出	1
	鉛	(mg/L)	0.001>	0.001>	0.001>	0.001>	0.001>		0.01	
	六価クロム	(mg/L)	0.005>	0.005>	0.005>	0.005>	0.005>	0.005>	0.05	-
	砒素 総水銀	(mg/L)	0.001> 0.0005>	0.002 0.0005>	0.001> 0.0005>	0.004 0.0005>	0.001> 0.0005>	0.001> 0.0005>	0. 01 0. 0005	1
	アルキル水銀	$\frac{(mg/L)}{(mg/L)}$	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	- 0.0003 - 不検出	環
環	PCB	(mg/L)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	不検出	>/K
	シ゛クロロメタン	(mg/L)	0.002>	0.002>	0.002>	0.002>	0.002>	0.002>	0.02	
境	四塩化炭素	(mg/L)	0.0002>	0.0002>	0.0002>	0.0002>	0.0002>	0.0002>	0.002	境
基	塩化ビニルモノマー 1,2ージクロロエタン	(mg/L) (mg/L)	0.0002> 0.0004>	0.0002> 0.0004>	0.0002> 0.0004>	0.0002> 0.0004>	0.0002> 0.0004>	0.0002> 0.0004>	0. 002 0. 004	-
4	1, 1-ジクロロエチレン	(mg/L)	0.0004>	0.0004>	0.0004>	0.0004>	0.0004>	0.0004>	0.004	基
準	1, 2-ジクロロエチレン	(mg/L)	0.004>	0.004>	0.004>	0.004>	0.004>	0.004>	0.04	
_	1, 1, 1-トリクロロエタン	(mg/L)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	1	200
項	1, 1, 2-トリクロロエタン	(mg/L)	0.0006>	0.0006>	0.0006>	0.0006>	0.0006>	0.0006>	0.006	準
目	トリクロロエチレン テトラクロロエチレン	(mg/L) (mg/L)	0.002> 0.0005>	0.002> 0.0005>	0.002> 0.002>	0.002> 0.0005>	0.002> 0.0005>	0.002> 0.0005>	0. 03 0. 01	
	1, 3-ジクロロプロペン	(mg/L)	0.0003>	0.0003>	0.0002>	0.0003>	0.0003>	0.0003>	0.002	値
	チウラム	(mg/L)	0.0006>	0.0006>	0.0006>	0.0006>	0.0006>	0.0006>	0.006] "
	シマジン	(mg/L)	0.0003>	0.0003>	0.0003>	0.0003>	0.0003>	0.0003>	0.003	
	チオベンカルブ ベンゼン	(mg/L)	0. 002> 0. 001>	0. 02 0. 01	1					
	セレン	(mg/L) (mg/L)	0.001>	0.001>	0.001>	0.001>	0.001>	0.001>	0. 01	
	硝酸性窒素及び亜硝酸性窒素	(mg/L)	0. 055>	0.46	10	3. 3	5. 2	6. 0	10	
	ふっ素	(mg/L)	0.65	0.24	0.08>	0.34	0. 15	0.34	0.8	
	ほう素	(mg/L)	0.10	0.02	0.07	0. 19	0. 19 0. 005>	0.08	1	-
	1, 4-ジオキサン クロロホルム	(mg/L) (mg/L)	0.005>	0.005>	0.005>	0.005>	0.005>	0.005>	0. 05 0. 06	
	1, 2-ジクロロプロパン	(mg/L)	_	_	_	_	0.006>	_	0.06	1
	p-ジクロロベンゼン	(mg/L)	_	_	_	_	0.02>	_	0.2	
	イソキサチオン	(mg/L)	_	1	1	_	0.0008>		0.008	
	ダイアジノン フェニトロチオン	(mg/L)	_			_	0.0005> 0.0003>	_	0. 005 0. 003	-
要	ノェートロナオン イソフ゜ロチオラン	(mg/L) (mg/L)	_				0.0003>		0.003	1
	オキシン銅	(mg/L)	_		_	_	0.004>	_	0.04]
監	クロロタロニル	(mg/L)	_	_	_	_	0.004>	_	0.05	指
1111	プロピザミド	(mg/L)				_	0.0008>		0.008	11
	EPN ジクロルボス	$\frac{(mg/L)}{(mg/L)}$	_				0.0006> 0.0008>	_	0. 006 0. 008	
視	フェノブカルブ	(mg/L)	_			_	0.0008>	_	0.008	針
	イプロベンホス	(mg/L)	_	_	_	_	0.0008>	_	0.008	
項	クロルニトロフェン	(mg/L)	_	1	1	_	0.0001>	_	-	値
	トルエン	(mg/L)	_		_	_	0.06>		0.6	"-
_	キシレン フタル酸ジエチルヘキシル	$\frac{(mg/L)}{(mg/L)}$				_	0. 04> 0. 006>		0.4	1
目	ニッケル	(mg/L)	_			_	0.0007	_	-	1
	モリブデン	(mg/L)	_	-	-	_	0.007>	_	0.07	
	アンチモン	(mg/L)	_	1	1	_	0.002>	_	0.02	
	エピクロロヒドリン 全マンガン	(mg/L)		<u> </u>	<u> </u>	_	0.00004>	_	0.0004	-
	<u> </u>	(mg/L) (mg/L)	_			_	0. 15	_	0. 2	1
その他	nН	\\0/ L/	6.8	6. 7	6. 5	7. 1	6.6	7. 1	33	
この旭	導電率	$(\mu\mathrm{S/cm})$	350	290	380	1400	2500	440	/	_

測;			7	8	9	10	11	12	13		
調			概況	概況	概況	継続	継続	継続	継続	環	
.,	在地		垂水区	西区	北区	監視 東灘区	監視 垂水区	監視 北 区	監視 垂水区	境	
מוללו	IT TE		西舞子		淡河町勝雄		大町	道場町	舞子台	基準	
抽	区番号		8100	4056	9010	1059	8023	9042	8138	進 値	
	<u> </u>		038103	329903	048301	013125	038207	052903	038104	•	
	井戸深度	(m)	不明	30-40	不明	80	不明	50	不明	指	
の	浅井戸・深井戸の別	(===)	不明	深井戸	浅井戸	深井戸	不明	深井戸	浅井戸	針 値	
諸元			雑用水	冷却水	雑用水	雑用水	雑用水	雑用水	生活用水	山	
	水年月日		H25. 10. 1	H25. 10. 1	H25. 10. 1		H25. 10. 1		H25. 10. 1		
水		(°C)	22.2	18.4	21. 9	19.0	22.4	21.3	23.3	(mg/L)	T
	カドミウム 全シアン	(mg/L) (mg/L)	0.0003>	0.0003> 0.1>	0.0003>	_	_	_	_	0.003 不検出	
	鉛	(mg/L)	0.001>	0.001>	0.001>	_	_	_	_	0.01	1
	六価クロム	(mg/L)	0.005>	0.005>	0.005>	_	_	_	_	0.05]
	砒素	(mg/L)	0.002	0.001	0.001	0. 037	_	0.025		0.01	-
	総水銀 アルキル水銀	(mg/L) (mg/L)	0.0005> 0.0005>	0.0005> 0.0005>	0.0005> 0.0005>			_	_	0.0005 不検出	環
環	アルギル水 PCB	(mg/L)	0.0005>	0.0005>	0.0005>				_	不検出	坏
- 15	シ゛クロロメタン	(mg/L)	0.002>	0.002>	0.002>	_	_	_	_	0.02	
境	四塩化炭素	(mg/L)	0.0002>	0.0002>	0.0002>	_	_	_	_	0.002	境
#	塩化ビニルモノマー	(mg/L)	0.0002>	0.0002>	0.0002>	_	_	_	_	0.002	-
基	1, 2-ジク□□エタン 1. 1-ジク□□エチレン	(mg/L) (mg/L)	0.0004> 0.002>	0.0004> 0.002>	0.0004> 0.002>	_		_	0.022	0.004	基
準	-, - , , , , , , , , , , , , , , , , ,	(mg/L)	0.004>	0.004>	0.004>	_	_	_	-	0. 04	- 25
	1, 1, 1-トリクロロエタン	(mg/L)	0.0005>	0.0005>	0.0005>	_	_	_	_	1]
項	1, 1, 2-トリクロロエタン	(mg/L)	0.0006>	0.0006>	0.0006>	_	_	_	_	0.006	準
目	トリクロロエチレン テトラクロロエチレン	(mg/L)	0.002> 0.0005>	0.002> 0.0005>	0.002> 0.0005>		0 0002		0.004 0.038	0. 03	-
Ħ	1. 3-ジクロロプロペン	(mg/L) (mg/L)	0.0003/	0.0003/	0.0003/		0.0083		0.038	0.01	値
	チウラム	(mg/L)	0.0006>	0.0006>	0.0006>	_	_	_	_	0.006	
	シマジン	(mg/L)	0.0003>	0.0003>	0.0003>	_	_	_	_	0.003	
	チオベンカルブ	(mg/L)	0.002>	0.002>	0.002>	_			_	0. 02	4
	ベンゼン セレン	(mg/L) (mg/L)	0.001> 0.001>	0.001> 0.001>	0.001> 0.001>		_	_	_	0. 01 0. 01	
	硝酸性窒素及び亜硝酸性窒素	(mg/L)	0.055>	0.055>	0. 14	_	_	_	_	10	1
	ふっ素	(mg/L)	0.10	0.08>	0.30	2.2	_	4. 1	_	0.8]
	ほう素	(mg/L)	0.03	0. 02	0.08	_	_	1. 3	_	1	4
	1, 4-ジオキサン クロロホルム	(mg/L) (mg/L)	0.005>	0.005> 0.006>	0.005> 0.006>				_	0. 05 0. 06	-
	1, 2-ジクロロプロパン	(mg/L)	_	0.006>	0.006>	_	_	_	_	0.06	1
	p-ジクロロベンゼン	(mg/L)	_	0.02>	0.02>	_	_	_	_	0.2	1
	イソキサチオン	(mg/L)	_	0.0008>		_	_	_	_	0.008	
	ダイアジノン フェニトロチオン	(mg/L)	_	0.0005> 0.0003>	0.0005>	_	_	_	_	0.005	-
要	イソフ。ロチオラン	(mg/L) (mg/L)		0.0003/	0.0003/	_	_		_	0.003	
	オキシン銅	(mg/L)	_	0.004>	0.004>	_	_	_	_	0.04	
監	クロロタロニル	(mg/L)	_	0.004>	0.004>	_	_	_	_	0.05	指
шь	プロピザミド	(mg/L)	_	0.0008>	0.0008>	_	_	_	_	0.008	114
	EPN ジクロルボス	$\frac{(mg/L)}{(mg/L)}$	_	0.0006> 0.0008>	0.0006>	_	_	_	_	0. 006 0. 008	ł , .
視	フェノブカルブ	(mg/L)	_	0.0003>	0.0003>	_	_	_	_	0.003	針
	イプロベンホス	(mg/L)	_	0.0008>	0.0008>	_	_	_	_	0.008	
項	クロルニトロフェン	(mg/L)	_	0.0001>	0.0001>	_	_	_	_	_	値
	トルエンキシレン	(mg/L) (mg/L)	_	0.06>	0.06> 0.04>	_	_	_	_	0.6	- "-
_	<u>インレン</u> フタル酸ジエチルヘキシル	(mg/L)	_	0.04>	0.04>	_	_	_	_	0. 4	•
目	ニッケル	(mg/L)	_	0.000>	0.000	_	_	_	_	-	1
	モリブデン	(mg/L)	_	0.007>	0.007>	_	_	_	_	0.07]
	アンチモン	(mg/L)	_	0.002>	0.002>	_	_	_	_	0.02	-
	エピックロロヒト゛リン	(mg/L)	_	0.00004>		_	_	_	_	0.0004	-
	<u>全マンガン</u> ウラン	(mg/L) (mg/L)	_	0. 45 0. 0002>	0.02>		_		_	0. 2 0. 002	1
7 ~ "	nН	(IIIg/L)	6. 7	6. 4	6. 7	7. 2	5. 9	7. 3	6. 0	0.002	ь
その他	導電率	(μS/cm)	240	480	410	400	280	3400	310		_

Ⅲ ダイオキシン類調査

(水質・底質・土壌)

Ⅲ ダイオキシン類調査

1. 調査の概要

神戸市では、ダイオキシン類対策特別措置法(平成12年1月施行)第26条に基づき、平成12年度より、ダイオキシン類について常時監視を実施している。

平成25年度は、河川13地点、湖沼1地点、海域9地点、地下水4地点、土壌8地点で調査を行った。

2. 公共用水域の水質及び底質

(1) 調査時期、頻度

河川・湖沼:平成25年9月、年1回

海域: 平成 25 年 9~10 月、年 1 回

(2) 調査地点

公共用水域測定地点等から選定した、河川13地点、湖沼1地点、海域9地点(図3-1)

(3) 調査方法

水質	日本工業規格 KO312「工業用水・工場排水中のダイオキシン類及びコプラナーPCBの測定方法」による。
底 質	「ダイオキシン類に係る底質調査測定マニュアル」(平成21年3月)による。

(4) 調査結果

平成 25 年度の調査結果を表 3-2-1 に示す。

水質は調査したすべての地点で環境基準値(1 pg-TEQ/L)を下回っていた。 底質も調査したすべての地点で環境基準値(150pg-TEQ/g)を下回っていた。

表 3-2-1 水質・底質のダイオキシン類調査結果

表 3-2-1 水質・肽質のタイスキンク類調宜結果						
調査地	也 点(公共用水域の測定地点都	番号)	水 質 pg-TEQ/L	底 質 pg-TEQ/g-dry		
	志染川・坂本橋	(16)	0. 23	1. 2		
	明石川・上水源取水口	(20)	0. 24	0.65		
	伊川・二越橋	(27)	0.45	0.80		
	福田川・福田橋	(51)	0.59	0. 97		
	有馬川・月見橋	(6)	0.13	0. 22		
	都賀川・昌平橋	(36)	0.10	0. 27		
河川	布引水源池・水源池上流	(39)	0.090	0.30		
	烏原川・水源池上流	(43)	0.11	0. 28		
	淡河川・万代橋	(14)	0.30	44		
	武庫川・大岩橋	(2)	0.10	0. 23		
	大沢川・万歳橋	(12)	0.30	1. 2		
	鰈川·西区岩岡町	(28)	0.41	0.36		
	印籠川・西区岩岡町	(29)	0.41	0.37		
湖沼	千苅水源池・取水塔前	(3)	0.089	10		
	兵庫運河·材木橋	(64)	0. 23	53		
	神戸港・中央	(80)	0.079	20		
	第4工区南・沖合(1)	(76)	0.12	25		
\\(\alpha\)	第4工区南・沖合(2)	(77)	0.11	24		
	ポートアイランド東・第6防波堤	北(79)	0.081	16		
海域	須磨海域・JR須磨駅前	(71)	0.079	1.8		
	ポートアイランド南・沖合(1)	(62)	0.16	19		
	舞子海域・舞子漁港	(75)	0.069	0. 24		
	遠矢浜北側水域	_	0.19	92		

3. 地下水

(1) 調査時期、頻度

平成25年11月、年1回

(2) 調査地点

長田区、須磨区、垂水区を代表する計4地点(図3-2)

(3) 調査方法

日本工業規格 K0312「工業用水・工場排水中のダイオキシン類及びコプラナーPCBの測定方法」による。

(4) 調査結果

平成 25 年度の調査結果を表 3-3-1 に示す。

調査したすべての地点で環境基準値(1pg-TEQ/L)を下回っていた。

10.	フェ 地下水のグイスインシ 髪	机山州木
	調査地点	調査結果 pg-TEQ/L
	長田区一番町	0. 038
地下水	須磨区東須磨	0. 039
地下水	須磨区妙法寺	0.042
	垂水区舞子陵	0.044

表 3-3-1 地下水のダイオキシン類調査結果

4. 土壌

(1) 調査時期、頻度

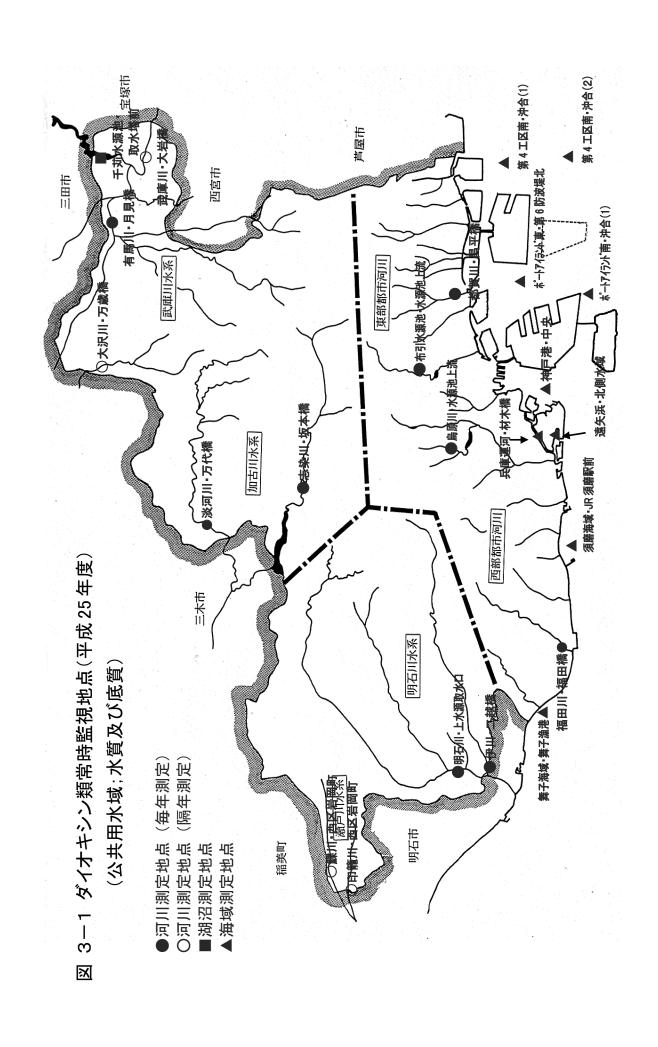
平成25年9月、年1回

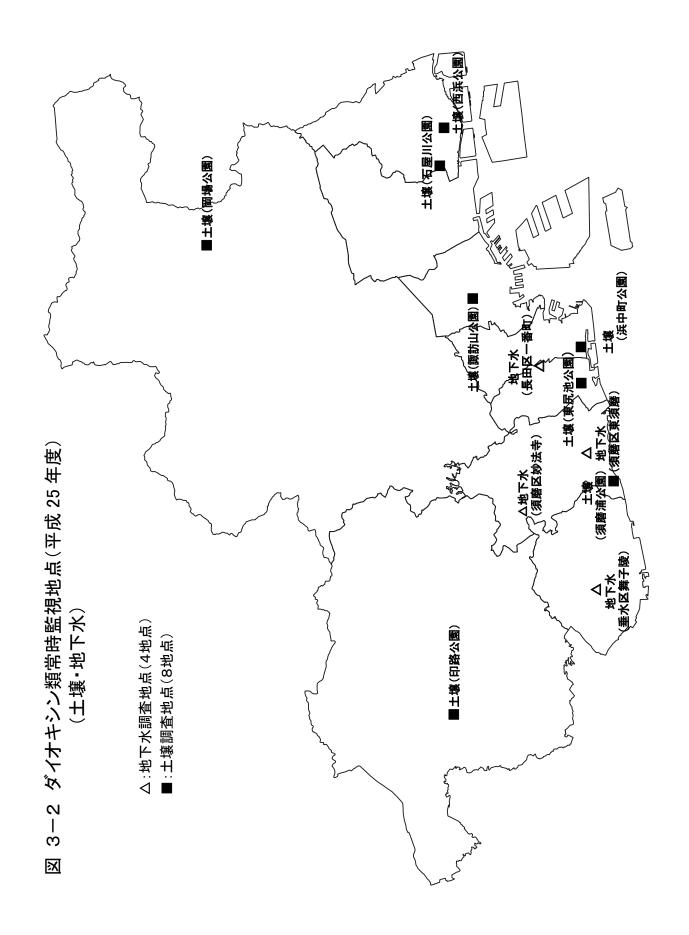
(2) 調査地点

市内の公園等8地点(図3-2)

(3) 調查方法

「ダイオキシン類に係る土壌調査測定マニュアル」(平成21年3月)による。


(4) 調査結果


平成25年度の調査結果を表3-4-1に示す。

調査したすべての地点で環境基準値(1,000pg-TEQ/g)を下回っていた。

表3-4-1	土壌のダイオキシン類調査結果	=
* 1.16 . 1: 12	⊒C- / luk	

調査地点名	所在地	調査結果
石屋川公園	東灘区御影石町	2. 3
西浜公園	東灘区魚崎南町	0.040
諏訪山公園	中央区諏訪山町	0. 29
浜中町公園	兵庫区浜中町	0.065
岡場公園	北区藤原台北町	0.10
東尻池公園	長田区東尻池町	17
須磨浦公園	須磨区一ノ谷	19
印路公園	西区平野町印路	0.30

IV 特別調査

IV 特別調査

1. 底質調査

公共用水域における底質の状況を調査することにより、累積的な水質汚濁の状況を把握できるだけでなく、底泥からの有機物・栄養塩類等の溶出や貧酸素水塊の発生など、底質が水質に及ぼす影響を検討する上での基礎的な資料を得ることができる。

本市では、計画的かつ効率的に底質を調査するため、平成8年度より市内河川及び海域を それぞれ3水域に分け、毎年各1水域ずつを調査している。平成25年度は、河川は北神水域について、海域はA類型の公共用水域常時監視地点について調査を行った。

(1) 底質調査の概要

① 調査時期、頻度

河川: 平成 25 年 10 月 31 日 海域: 平成 25 年 10 月 21 日 年 1 回

② 調査地点

調査は公共用水域測定地点で実施した。

河川:10 地点(表 4-1-1) 海域:7 地点(表 4-1-2)

表 4-1-1 河川における底質調査地点 (平成 25 年度)

水域名	調査地点名	公共用水域の 地 点 番 号
	武庫川・亀治橋	1
	武庫川・大岩橋	2
	有馬川・長尾佐橋	4
	有馬川・月見橋	6
北神水域	有野川・流 末	9
41个甲7八-坝	八多川・才谷橋	1 0
	長尾川・大江橋	1 1
	大沢川・万歳橋	1 2
	淡河川・万代橋	1 4
	志染川・坂本橋	1 6

表 4-1-2 海域における底質調査地点 (平成 25 年度)

類型	海域名	公共用水域の 地 点 番 号
	須磨港・西防波堤	7 0
	須磨海域・JR須磨駅前	7 1
Α	須磨海域・海釣公園	7 2
類	ポートアイランド南・沖合(3)	8 2
型	垂水海域・垂水漁港	7 4
	舞子海域・舞子漁港	7 5
	垂水海域・沖合	83

③ 調査方法

河川は鋤簾又はスコップ、海域はエクマンバージ型採泥器を用い、表層泥を採集した。

④ 分析項目及び分析方法

項目	分析方法
①粒度分布	J I S A 1 2 0 4 -2000
②乾燥減量	「底質調査方法」* Ⅱ. 4.1
③強熱減量	「底質調査方法」 Ⅱ. 4.2
④ p H	「底質調査方法」 Ⅱ. 4.4
⑤酸化還元電位	「底質調査方法」 Ⅱ. 4.5
$\textcircled{6}$ C O D_{sed}	「底質調査方法」 Ⅱ. 4.7
⑦全窒素	「底質調査方法」 Ⅱ. 4.8.1
⑧全 燐	「底質調査方法」 Ⅱ. 4.9.1
⑨硫化物	「底質調査方法」 Ⅱ. 4.6

^{*} 底質調査方法:平成24年8月8日付け環水大水発第120725002号

(2) 調査結果

底質調査結果を表 4-1-3 に示す。

① 河川

いずれの調査地点でも底質に臭気はなく、性状は小石混じり砂質であった。

分析の結果、CODsed は $<500\sim1100$ mg/kg-dry、全窒素は $10\sim70$ mg/kg-dry、全燐は $45\sim186$ mg/kg-dry の範囲であった。また、硫化物はすべて検出下限値未満(<10)であった。全地点とも底泥中の有機物の酸素消費に伴う底質の悪化は起こっていないものと考えられる。

なお、過去 2 回 (平成 19 年度及び平成 22 年度) の調査結果と比較すると、一部に変動の見られる地点もあるが、概ね同程度の数値が検出されており、北神河川水域の底質の汚濁の程度は経年的にみて、概ね横ばいで推移している。

2 海域

ポートアイランド南・沖合(3)で微硫化水素臭が認められた他は、全地点で臭気はなかった。シルト・粘土分の含有率は、ポートアイランド南・沖合(3)で 85.4%、垂水海域・垂水漁港では 48.8%と高い割合を示したが、その他の地点では 2-0.075mmの砂分が多くの部分を占めていた。

分析の結果、CODsed は $700\sim23,000~mg/kg-dry$ 、全窒素は $60\sim1,830~mg/kg-dry$ 、全 燐は $62\sim428~mg/kg-dry$ 、硫化物は $<10\sim300~mg/kg-dry$ の範囲で検出された。CODsed、 全窒素、全燐といった有機物の堆積に係る項目は、特にポートアイランド南・沖合(3) でいずれの項目も高い値を示し、次いで垂水海域・垂水漁港で高かった。A類型海域で あっても、特にシルト分の多かった地点で高い値を示す傾向にあり、有機物の堆積による影響が現れていると思われる。

なお、過去 2 回 (平成 19 年度及び平成 22 年度) の調査結果と比較すると、年間変動の大きい項目もあるが、概ね横ばいで推移している。

表 4-1-3 河川・海域の底質調査結果 (平成25年度)

ŀ	星	争业		2000年	#	型井	与	水質に関	水質に関する調査項	 重項目						頁	5質に関す	底質に関する調査項目								_
N (*	70(图斥唱员		17/1/2	Ė.	人	¥ III	水温	透視度	透明度	泥温	44 40	=======================================	1,1	Ηd	乾燥減量	乾燥減量 強熱減量	CODsed	全窒素	分蘇	硫化物	酸化還元電位	粒	粒度分布 (%)	(_
?	No. 水域名		地点名	В	申		(°C)	(°C)	(cm)	(m)	(°C)	E E	× ×	工化	(H_20)	(%)	(%dry)		(mg/kg-dry)	dry)		(mV)	>2mm	$2-0.075 \mathrm{mm}$	<0.075mm	_
	1	祖 無	武庫川 亀治橋	10月31日	13:10	崳	20.1	17.6	> 20		17.7	オリーフ" 褐色	なし	小石混じり砂質	8.0	24. 2	0. 79	<500	20	28	<10	250	48.5	50.8	0.7	
	2		洪庫川 大岩橋	10月31日	13:30	ャ	22. 0	17.6	> 20		18.3	オリーブ 褐色	なし	小石混じり砂質	8.1	28.3	1. 38	1100	70	78	<10	260	57.6	41.6	0.8	
	4	有長	有馬川 長尾佐橋	10月31日	14:05	啷	17.1	16.1	> 20		15.9 4	オリーフ* 褐色	なし	小石混じり砂質	8.1	20.6	0.69	<500	20	45	<10	250	72.0	27.9	0.1	
	6 武庫川水系		有馬川 月見橋	10月31日	12:10	嘝	18.6	16.9	> 20		16.5 #	オリーブ 褐色	なし	小石混じり砂質	8.2	18.9	0.75	800	20	66	<10	270	84.0	16.0	0.0	
河	6	—————————————————————————————————————	有野川 流末 1	10月31日	11:50	華	18.5	16.3	> 09<		16.4	暗灰黄色	なし	小石混じり砂質	8.3	18.2	0.81	<500	10	71	<10	250	70. 4	28.6	1.0	
Ξ	10	\	大 多三 小公 高 都	10月31日	11:25	崔	16.7	16.1	> 20		17.6	黒褐色	なし	小石混じり砂質	8.2	20.1	1. 38	1100	70	108	<10	260	72. 6	26. 1	1.3	
	11	大馬	長尾川 大江橋	10月31日	11:05	崋	18.0	15.0	- 09		17.2	黒褐色	なし	小石混じり砂質	8.1	19.3	1. 42	800	70	173	<10	250	73.7	23. 5	2.8	
	12	大 万	大沢川 万歳橋 1	10月31日	10:40	崔	15.0	12.9	> 20	1	13.1	暗灰黄色	なし	小石混じり砂質	8.2	20.6	1. 52	700	09	186	<10	240	73.3	25.0	1.7	
	14 加古川水系		淡河川 万代橋	10月31日	10:02	崔	16.5	15.0	> 20	1	14.8	暗灰黄色	なし	小石混じり砂質	8.3	19.8	1. 44	<500	30	107	<10	260	43.4	55.0	1.6	
	16	短光	志染川 坂本橋	10月31日	9:30	咃	15.0	13.8	>20		14.3	暗灰黄色	なし	小石混じり砂質	8.2	17.9	1. 44	006	70	152	<10	270	88.3	10.8	0.9	
	70	須西	須磨港 西防波堤	10月21日	10:00	華	22. 5	21.9		9.0	22.1	オリーブ黒色	なし	砂混じりシルト質	8.2	21. 4	2.67	6100	400	154	06	06-	1.7	78.8	19. 5	
	71	須摩 J R 绳	須磨海域 R須磨駅前	10月21日	10:20	華	22. 6	22.2		>6.4 2	22.8	オリーブ黒色	なし	シルト混じり砂質	8.4	25.5	4. 40	4400	450	146	20	-120	8.0	76.8	15.2	
埬	72	海海	須磨海域 海釣公園	10月21日	10:40	奎	22. 6	22.1		10.0	22.9	灭才)−7*色	なし	シルト混じり砂質	8.6	20.6	2. 73	2800	230	112	<10	-30	2.0	91.0	7.0	
	82 大阪湾	÷.	ーケイテント [*] 南 神合(3)	10月21日	13:00	華	23.8	23.1		8.0	23.9	オリーブ、黒色 🎙	微硫化水 素臭	粘土混じりシルト質	8.1	42. 2	7.81	22100	1830	428	300	-370	3.0	11.6	85.4	
英	74	垂力垂本	垂水海域 垂水漁港	10月21日	11:05	華	22. 8	22.8		9.5	22.9	灰杉)-7°色	なし	砂混じりシルト質	8.6	35. 1	6. 53	23000	1570	375	100	-250	10.3	40.9	48.8	
	75	推推	舞子海域 舞子漁港	10月21日	11:45	一	23.8	23.0		6.5	23.5	灰杉)-7°色	なし	砂質	8.7	16.5	2. 18	1600	110	62	20	20	44. 4	53.9	1.7	
	83	垂水	垂水海域 沖合	10月21日	12:20	嘝	23.8	24.0		7.5 2	24.1	黄褐色	なし	砂質	8.6	24. 4	5.94	700	09	84	<10	130	16.1	81.7	2. 2	

2. 水生生物調査

公共用水域における水生生物の生育・生息状況等を調査することにより、生物相及びその 環境条件の把握を行う。

本調査では、公共用水域を都市河川水域、西神河川水域、北神河川水域及び海域の 4 水域に分け、原則として毎年 1 水域ずつ水生生物調査を実施している。平成 25 年度は、海域の魚類・甲殻類等について調査を実施した(表 4-2-1)。

実 施 年 度	水域区分	調査項目
S57, S61, H2, H6, H10, H14, H18, H22	都市河川水域	魚類、水生小動物*1、
S58, S62, H3, H7, H11, H15, H19, H23	西神河川水域	底生動物、付着藻類
S59, S63, H4, H8, H12, H16, H20, H24	北神河川水域	
S60, H1, H5, H9, H13, H17, H21, H25		魚類、甲殼類等
S60, H1, H2, H5, H9, H10, H11, H12, H13,	海村	マクロベントス (底生生物)、
H14, H15, H16, H17, H18, H19, H20, H21,	海域	底質
H22, H23, H24, H25		

表 4-2-1 水生生物調査の実施状況

(1) 神戸海域の水生生物調査

① 調査の目的

海域における水生生物の生育及び生息状況の把握を行う。

② 調査時期

平成 25 年 11 月 13 日~14 日

③ 調査地点

神戸海域 4 地点 (図 4-2-1 及び表 4-2-2 のとおり)

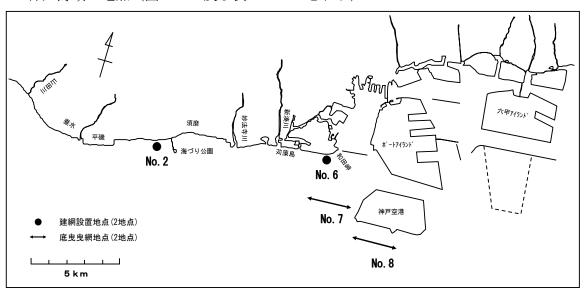


図 4-2-1 調査地点図

^{*1} 水生小動物とは、魚類調査において同時に採取された貝類、甲殻類、昆虫などの水生の小動物をいう。

表 4-2-2 調査地点の名称と位置 (WGS-84 世界測地系)

調査地点	地点名	北緯	東経	採取法
No. 2	須磨海域・海づり公園西	34° 38′ 06″	135° 06′ 00″	建網
No. 6	和田岬・和田岬灯台南	34° 38′ 54″	135° 10′ 55″	建網
No.7 始点	・ 兵庫~第一防波堤南・沖合	34° 37′ 40″	135° 11′ 56″	10000000000000000000000000000000000000
No.7 終点	▼	34° 37′ 32″	135° 10′ 16″	底曳網
No.8 始点	・ ポートアイランド南・沖合(1)	34° 37′ 09″	135° 14′ 10″	底曳網
No.8 終点	・ かートノオ ノント 的・仲合(1)	34° 36′ 48″	135° 12′ 30″	瓜

④ 調査項目

魚類およびメガロベントス(魚類を除く大型の底生生物:エビ類、カニ類、シャコ類、ヤドカリ類、ナマコ類、ヒトデ類、イカ・タコ類、貝類)

⑤ 調査方法

図 4-2-1 および表 4-2-2 に示した 4 地点のうち、No. 2 および No. 6 の 2 地点では建網を、No. 7 および No. 8 の 2 地点では底曳網をそれぞれ用いて生物を採取した。

得られた漁獲物から、魚類およびメガロベントスを選別し、地点別に種別個体数と湿重量を 記録した。また、各地点で出現した全種について、100 個体を上限として各個体の体の大きさ と湿重量を計測した。カニ類は殻幅を、イカ・タコ類は胴長を、ヒトデ類は幅長を計測した。

⑥ 調査結果

魚類の分析結果を表 4-2-3~4 に、メガロベントスの出現状況を表 4-2-5~6 に示す。

ア. 魚類

No. 2 および No. 6 における建網調査では、13 種の魚類が確認され、カワハギ、カサゴ、イシダイ、マコガレイ等、水産上の有用種も含まれていた。1 網当たりの漁獲個体数および湿重量は、ともに No. 6 のほうが No. 2 よりも多かったが、岩礁域や砂泥底域に生息する底生魚が中心という傾向は両地点とも同様であった。

No. 7 および No. 8 における底曳網調査では、10 種の魚類が確認された。両地点とも、オキヒイラギ、テンジクダイ、エソ類等の小型底生魚が中心で、大型の水産有用種は少なかった。

また、前回調査では、建網でマサバ等の遊泳性魚類が、底曳網でスズキ等の大型個体が、それぞれ多数採取されたが、平成25年度の調査では、そうした魚種は、ごく少数出現するか、まったく出現しなかった。

イ. メガロベントス

No. 2 および No. 6 における建網調査では、ごく限られた種の大型個体しか採取されなかったが、 水産有用種であるタイワンガザミが確認された。

No. 7 および No. 8 における底曳網調査では、2 地点合計で 24 種のメガロベントスが確認された。 その多くはイカ類、クルマエビ類、カニ類の小型種や、砂泥底性のヒトデ類であったが、コウイカ、 マナマコ、クマエビ等の水産有用種も含まれていた。1 曳網当たりの漁獲個体数では No. 7 が、湿重 量では No. 8 がそれぞれ他方を上回ったが、顕著な差とまでは言えなかった。

表 4-2-3 魚類分析結果 (建網: No. 2、No. 6)

			地点No.		2	2			(6			
			地点名	須	磨海域・海	事づり公園西		君	和田岬・和	田岬灯台南	Î		
目名	科名	種 名			測定	項目			測定	項目			
		学 名	標準和名	個体数	湿重量(g)	全長(最小	(cm) 最大	個体数	湿重量(g)	全長 最小	(cm) 最大		
エイ	サカタサ゛メ	Rhinobatos hynnicephalus	コモンサカタサ゛メ	2	354.0	36. 2	38. 9						
	アカエイ	Dasyatis akajei	アカエイ	4	976.0	34. 9	52. 2						
スス゛キ	アシ゛	Trachurus japonicus	マアシ゛					2	59.0	13.9	14.7		
	タイ	Pagrus major	マダイ	1	52.0	15. 1	15. 1						
	イシタ゛イ	Oplegnathus fasciatus	イシタ゛イ	1	583.0	28.5	28. 5	2	335.0	17.8	20.3		
	^*ラ	Halichoeres poecilopterus	キュウセン	1	162.0	23.6	23.6						
カサコ゛	フサカサコ゛	Sebastes inermis	メハ゜ル					1	180.0	22.3	22.3		
		Sebastiscus marmoratus	カサコ゛	2	310.0	19.9	20.4	17	1,752.0	12.8	24.5		
	カシ゛カ	Pseudoblennius cottoides	アサヒアナハセ゛					1	76.0	19.5	19.5		
カレイ	カレイ	Pleuronichthys cornutus	メイタカ゛レイ	1	125.0	20.6	20.6						
		Pleuronectes yokohamae	マコカ゛レイ	1	176.0	24.3	24. 3	2	1,627.0	35.5	38.5		
フク゛	カワハキ゛	Thamnaconus modestus	ウマツ゛ラハキ゛					1	103.0	20.5	20.5		
		Stephanolepis cirrhifer	カワハキ゛	9	1, 157.0	16.3	19.7	17	2,028.0	15.9	20.3		
	•	合 計	•	22	3, 895. 0	-		43 6, 160. 0					
		出 現 種 数			ç)				3			

単位) 個体数・湿重量(g)/網注) 1個体のみ出現の場合、全長は最大・最小の両方の欄に表記した。

表 4-2-4 魚類分析結果(底曳網: No. 7、No. 8)

			地点No.		7	7			8	3	
			地点名	兵原	車~第一防	波堤南・汽	中合	ポー	トアイラン	/ド南・沖1	今(1)
目名	科名	種 名			測定	項目			測定	項目	
		学 名	標準和名	個体数	湿重量(g)	全長 最小	(cm) 最大	個体数	湿重量(g)	全長 最小	(cm) 最大
エイ	アカエイ	Dasyatis akajei	アカエイ	1	236.0	40.5	40.5				
ヒメ	エソ	Saurida sp.	マエソ	2	62.0	16.8	18.2	1	8.0	11.3	11.3
		Saurida wanieso	ワニエソ	3	244.0	18.3	26.3	1	79.0	22.6	22.6
スス゛キ	テンシ゛クタ゛イ	Apogon lineatus	テンシ゛クタ゛イ	7	12.0	3. 9	5.8	6	9.9	3.9	5.6
	ヒイラキ゛	Leiognathus rivulatus	オキヒイラキ゛	9	8.2	3.1	4.9	13	15.8	3.6	7.1
	タイ	Pagrus major	マタ゛イ	1	59.0	14.6	14.6				
カサコ゛	オニオコセ゛	Minous monodactylus	ヒメオコセ゛	1	13.0	8.9	8.9				
	コチ	Suggrundus meerdervoortii	メコ゛チ	3	63.0	11.9	14.8				
カレイ	ヒラメ	Pseudorhombus pentophthalmus	タマカ゛ンソ゛ウヒ゛ラメ	4	63.0	10.6	12.1				
	タ゛ルマカ゛レイ	Arnoglossus tenuis	ナカ゛タ゛ルマカ゛レイ	6	11.3	4.5	7.4				
		合 計	•	37	771.5		-	21	112.7		
		出 現 種 数			1	0				4	

単位) 個体数・湿重量(g)/曳網 注) 1個体のみ出現の場合、全長は最大・最小の両方の欄に表記した。

表 4-2-5 メガロベントス分析結果 (建網: No. 2、No. 6)

				地点No.		2	2			6		
				地点名	須	磨海域・治	再づり公園	西	ŧ	1田岬・和	田岬灯台南	
綱名	目名	科名	種 名			測定	項目			測定	項目	
			学 名	標準和名	個体数	湿重量(g)	全長 最小	(cm) 最大	個体数	湿重量(g)	全長(最小	(cm) 最大
甲殼	十脚	ワタリカ゜ニ	Portunus pelagicus	タイワンカ゛サ゛ミ	1	290.0	12. 4	12.4				
ヒトテ゛	ヒメヒトテ゜	イトマキヒトテ゜	Asterina pectinifera	イトマキヒトテ゛					7	344.0	4.6	6.3
			合 計		1	290.0	-		7	344.0	-	
			出 現 種 数						1			

単位) 個体数・湿重量(g)/網 注) 1個体のみ出現の場合、全長は最大・最小の両方の欄に表記した。

表 4-2-6 メガロベントス分析結果(底曳網: No. 7、No. 8)

				地点No.		7	7			8	3		
				地点名	兵庫	軍~第一防	波堤南・沖	合	ポー	トアイラン	ド南・沖台		
綱名	目名	科名	種名			測定	項目			測定	項目		
			学 名	標準和名	個体数	湿重量(g)	全長(最小	cm) 最大	個体数	湿重量(g)	全長 最小	(cm) 最大	
腹足	新腹足	クタ゛マキカ゛イ	Inquisitor jeffreysi	モミシ゛ホ゛ラ	1	3. 7	4.7	4.7	1	2.8	4.1	4. 1	
	コウイカ	コウイカ	Sepia esculenta	コウイカ					5	1, 103.0	10.2	14.4	
		タ゛ンコ゛イカ	Sepiolidae	ダンゴイカ科	4	23.7	2.0	3.1	4	17.0	1.6	1.9	
	ツツイカ	シ゛ント゛ウイカ	Loliginidae	ジンドウイカ科	123	463.4	2. 2	7.4	59	233.0	2.2	6.6	
甲殼	十脚	クルマエヒ゜	Metapenaeopsis acclivis	トラエヒ゜	26	32.7	3. 6	6.0	3	4.2	5.0	5.3	
			Metapenaeopsis barbata	アカエヒ゛	56	79.1	3. 2	6.4	120	169.2	3.0	6.6	
			Parapenaeopsis tenella	スヘ゛スヘ゛エヒ゛	2	0.5	2.6	2.9					
			Penaeus semisulcatus	クマエヒ゜	1	31.0	15. 2	15.2					
			Trachysalambria curvirostris	サルエヒ゛	10	15.5	3.9	5.7	14	22.6	3.2	6.0	
		ホンヤト゜カリ	Spiropagurus spiriger	セ゛ンマイヤト゛カリ	13	23. 9	2.8	4.0	3	4.3	3. 1	3.3	
		ヘイケカ゜ニ	Heikea japonica	ヘイケカ゛ニ					1	3.9	1.8	1.8	
		コフ゜シカ゜ニ	Arcania heptacantha	ナナトケ゛コフ゛シ	12	5.4	0.9	1.3	15	11.0	1.0	1.6	
			Leucosia rhomboidalis	ヒシカ゛タコフ゛シ	1	1.7	1.4	1.4					
			Myra celeris	テナカ゛コフ゛シ	19	16.4	0.9	1.8	29	52.0	0.9	2.9	
			Philyra heterograna	ヘリトリコフ゜シ	5	5. 2	1.2	1.5	18	16.2	1.0	1.4	
		クモカ゜ニ	Pyromaia tuberculata	イッカククモカ゛ニ	2	0.3	0.5	0.6	1	0.3	0.7	0.7	
		ワタリカ゜ニ	Charybdis bimaculata	フタホシイシカ゛ニ					2	1.3	1.4	1.5	
			Portunus hastatoides	ヒメカ゛サ゛ミ	85	50.7	1.1	2.1	48	30.8	1.3	2.1	
		エンコウカ゜ニ	Eucrate crenata	マルハ゜カ゜ニ	1	6.5	2.4	2.4					
	口脚	シャコ	Oratosquilla oratoria	シャコ	2	3.8	4.6	6.1					
ヒトテ゛	モミシ゜カ゜イ	モミシ゜カ゜イ	Astropecten scoparius	モミシ゛カ゛イ	171	117.4	0.8	5.4	2	22.8	4.7	5.1	
		スナヒトテ゜	Luidia quinaria	スナヒトテ゛	10	87.2	1.2	9.2	7	40.6	3.5	8.3	
	キヒトテ゜	キヒトテ゜	Asterias amurensis	キヒトテ゛	1	44.0	5.4	5.4					
ナマコ	樹手	シカクナマコ	Apostichopus japonicus	マナマコ	2	444.0	16.0	16.5					
·			合 計		547	1, 456. 1	-	ĺ	332 1,735.0 -				
		•	出 現 種 数			2	1			1	7		

単位) 個体数・湿重量(g)/曳網 注) 1個体のみ出現の場合、全長は最大・最小の両方の欄に表記した。

(2) 神戸海域の底生生物調査

① 調査の目的

海域における底生生物(マクロベントス)の生息実態を把握するとともに、水質試験、底質 試験等の結果から、これらの生物の環境条件を把握する。

② 調査時期

平成25年5月、8月、11月及び平成26年2月の4回

③ 調査地点

神戸海域の7地点(図4-2-2および表4-2-7のとおり)

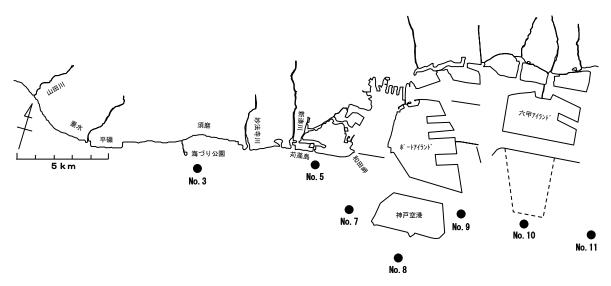


図 4-2-2 調査地点図

表 4-2-7 調査地点の名称と調査項目別の調査時期

No.	調査地点名	調査項目	調査時期
2	須磨海域・沖合	マクロベントス	5, 8, 11, 2 月
3	須 居 伊城・伊古	底質	11月
5	苅藻島南・沖合	マクロベントス	5, 8, 11, 2 月
5	刈 傑 毎 用 ・ 仲 日	底質	11月
7	兵庫~第一防波堤南・沖合	マクロベントス	5, 8, 11, 2 月
<u>'</u>	英 牌 第 奶饭堤用 作日	底質	11 月
0	ポートアイランド南・沖合(1)	マクロベントス	5, 8, 11, 2 月
0	かっトノイノント用・仲占(1)	底質	11月
0	ポートアイランド南・沖合(2)	マクロベントス	5, 8, 11, 2 月
9		底質	11 月
1.0	六甲アイランド南・沖合	マクロベントス	5, 8, 11, 2 月
1 0	ハヤノイ ノイド用・仲宣	底質	11月
1 1	第 4 工区南・沖合	マクロベントス	5, 8, 11, 2 月
1 1	男 4 上 戸 円 一 円 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	底質	11月

④ 調査項目及び調査方法

ア. マクロベントス

採泥器を用いて採取した海底の表層泥を 1mm 目のふるいにかけ、ふるい上に残ったものを固定して試料とした。なお、採泥面積は約 0.15 m²(採泥回数 3 回)とした。

イ. 底質分析

11 月調査においては底泥試料を別途採取し、粒度分布、乾燥減量(含水率)、強熱減量、COD (化学的酸素要求量)、全窒素、全りん、硫化物の分析を実施した。

また、マクロベントス採取時に、採取した底泥の泥色、臭気、夾雑物、外観、泥温、pH、ORP (酸化還元電位)を、現地にて観察、測定した。

⑤ 調査結果

ア. マクロベントス

(ア) 出現種類数

平成25年度の調査では、春季に59種類、夏季に58種類、秋季に51種類、冬季に71種類、 年間を通して合計122種類のマクロベントスが確認された。

調査地点別の出現種類数は、No. 3 が 31~44 種類で年間 87 種類、No. 5 が 11~19 種類で年間 34 種類、No. 7 が 13~22 種類で年間 39 種類、No. 8 が 7~21 種類で年間 35 種類、No. 9 が 9~13 種類で年間 23 種類、No. 10 が 4~13 種類で年間 20 種類、No. 11 が 1~10 種類で年間 15 種類であった(図 4-2-3)。

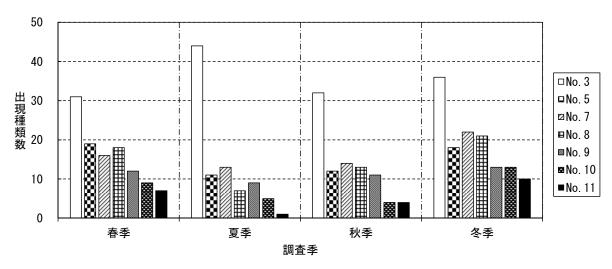


図 4-2-3 マクロベントスの地点別出現種類数

(イ) 出現個体数

平成 25 年度の調査における調査地点別の出現個体数(採取面積当たり)は、No. 3 が 73 \sim 251 個体、No. 5 が 13 \sim 89 個体、No. 7 が 46 \sim 371 個体、No. 8 が 13 \sim 374 個体、No. 9 が 53 \sim 242 個体、No. 10 が 21 \sim 2, 961 個体、No. 11 が 9 \sim 3, 725 個体であった(図 4 \sim 2 \sim 4)。

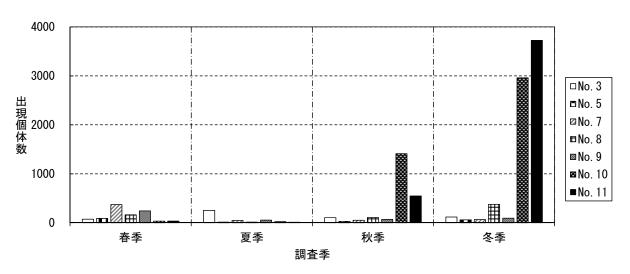


図 4-2-4 マクロベントスの地点別出現個体数

(ウ) 個体数における類別組成

出現したマクロベントスを多毛類(多毛綱)、貝類(大部分は二枚貝綱)、甲殻類(甲殻綱)、その他のグループに類別し、個体数における各グループの占める割合を地点別にみると、No.5から No.11にかけての6地点では、ほとんどの調査季で多毛類の占める割合が高く、おおむね60%以上を占めており、時には100%に達する場合もみられた。ただし、春季は多毛類の占める割合が相対的に低い地点が多く、そこでは代わって貝類の占める割合が高かった。一方、甲殻類やその他のグループの占める割合は常に低く、まったく出現しない場合もみられた。

これとは対照的に、No.3 では甲殻類の占める割合が常に高く、多毛類の占める割合は40%に達しなかった(図 4-2-5)。

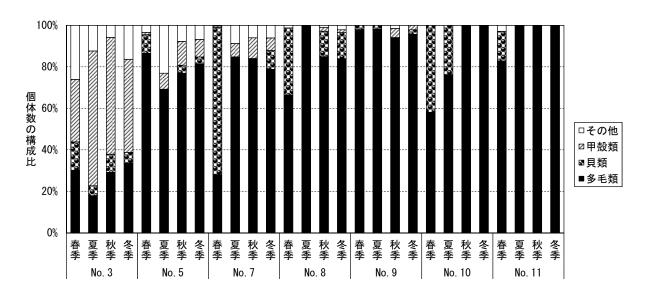
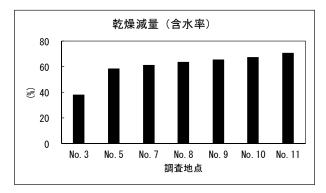
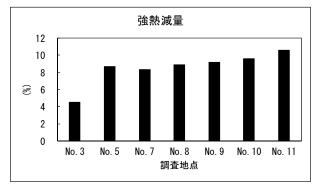
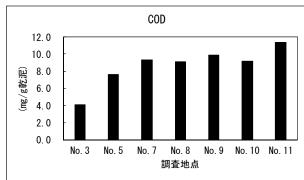
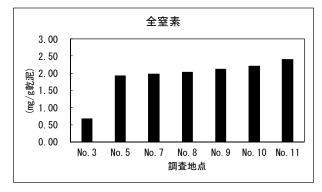


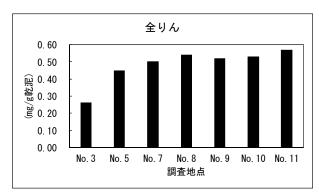
図 4-2-5 マクロベントスの個体数における類別組成

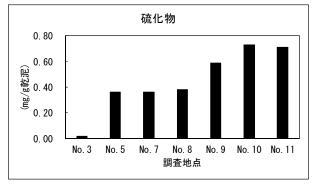

イ. 底質分析結果


分析項目のうち、乾燥減量(含水率)、強熱減量、COD、全窒素、全りん、硫化物については、いずれも No.3 で顕著に低い値を示した。また、調査域の西に位置する地点ほど値が低く、東に位置する地点ほど高い値を示す傾向がみられた。


粒度組成については、No.3 では細砂分が主体で、シルト+粘土分は少なかった。No.5 ではシルト+粘土が主体で、細砂分は少なかった。また、他の地点の海底泥にはほとんど含まれない礫分の占める割合がやや高かった。これより東側の5地点では、いずれもシルト+粘土分が95%以上を占めた。


現地観測項目のうち、臭気は、No. 3 ではまったく感じられず、逆に No. 11 では常にはっきりとした硫化臭が感じられた。No. $5\sim$ No. 10 の 5 地点では、おおむね、臭気が感じられないか、弱い硫化臭が感じられるかのいずれかであった。


ORP は、No. 3 が他の 6 地点よりも顕著に高く、プラスの値が観測された。一方、No. 5~No. 11 では、マイナスの値が観測された(図 4-2-6)。



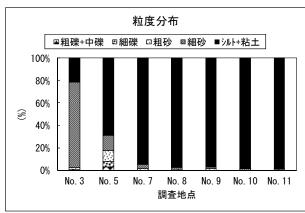


図 4-2-6 底質分析結果

3. 海水浴場水質調査

(1) 調査の目的

人が水と直接的に触れ合う海水浴場において、特に利用者が多い夏季の水浴場開設中の水質の状況を把握する。

あわせて、環境省が示す水浴場の放射性物質に関する指針値に適合しているか確認するため、放射性物質濃度測定を行う。

(2) 調査時期

① 水浴場水質調査

ア. 開設前調査 平成25年5月9日、15日

イ. 開設中調査 平成25年7月17日、30日

② 放射性物質濃度調査

平成 25 年 5 月 9 日

(3) 調査地点

① 水浴場水質調査

須磨海水浴場3地点、アジュール舞子海水浴場1地点

② 放射性物質濃度調査

須磨海水浴場及びアジュール舞子海水浴場 各1地点 なお、各調査地点の詳細は、図4-3-1及び図4-3-2のとおり

図 4-3-1 須磨海水浴場

図 4-3-2 アジュール舞子海水浴場

(4) 調査項目及び調査方法

① 水浴場水質調査

ふん便性大腸菌群数 (メンブランフィルター法)、油膜の有無(目視)、COD (日本工業規格 K0102 17)、透明度(白色円板による目視)、病原性大腸菌 0-157(食安監発 0515 第 1 号(平成 24 年 5 月 15 日)及び食安監発第 1102004 号(平成 18 年 11 月 2 日)に示す方法)、その他(水温、色相、臭気、pH等)

② 放射性物質濃度調査

放射性セシウム134及び放射性セシウム137(ゲルマニウム半導体検出器によるガンマ線スペクトロメトリー(文部科学省放射能測定シリーズ、平成4年8月))

(5) 調査結果

1 水浴場水質調査

平成25年度の水質調査結果を表4-3-1に示す。環境省の水浴場水質判定基準(表4-3-2)に 照らすと、須磨海水浴場では、開設前、開設中ともに「可 水質B」、アジュール舞子海水浴 場では、開設前は「適 水質A」、開設中は「適 水質A」であった。

また、平成8年度より参考項目として病原性大腸菌0-157の検査を実施しているが、須磨海水浴場、アジュール舞子海水浴場とも検出されたことはない。

				-		
海水浴場名	調査時期	ふん便性大腸菌群数 (個/100mL)	油膜の 有無	COD (mg/L)	透明度 (m)	判定
		(個/ 100000)	,H <u>''''</u>	(IIIg/ L)	(111)	
須磨海水浴場	開設前	不検出	無	3. 2	1以上	可 水質B
	開設中	2	無	2. 4	1以上	可 水質B
アジュール舞子	開設前	不検出	無	2.0	1以上	適 水質AA
海水浴場	開設中	2	無	1.4	1以上	適 水質A

表 4-3-1 水浴場水質調査結果

表 4-3-2 環境省の水浴場水質判定基準

	区分	ふん便性大腸菌群数 (個/100mL)	油膜の有無	COD (mg/L)	透明度
適	水質AA	不検出*	油膜が認められない	2以下	全透(1m以上)
通	水質A	100 以下	油膜が認められない	2以下	全透(1m以上)
可	水質B	400 以下	常時は油膜が認められない	5以下	1m 未満~50cm 以上
ΗJ	水質C	1,000以下	常時は油膜が認められない	8以下	1m 未満~50cm 以上
	不 適	1,000 超過	常時油膜が認められる	8 超過	50cm 未満

^{※ 「}不検出」とは、検出下限 (2個/100mL) 未満のことをいう。

須磨海水浴場及びアジュール舞子海水浴場の COD、ふん便性大腸菌群数の経年変化を図 4-3-3 ~6 に示す。

須磨海水浴場は昭和 40 年代、存続すら危ぶまれる状況であったが、周辺地域での下水道整備や法令による規制強化等により、水質は一時に比べ大幅に改善され、近年はほぼ良好な状態で推移している。

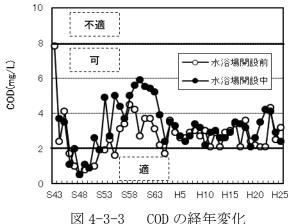


図 4-3-3 COD の経年変化 (須磨海水浴場)

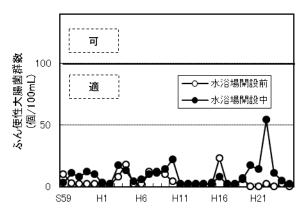


図4-3-4 ふん便性大腸菌群数の経年変化 (須磨海水浴場)

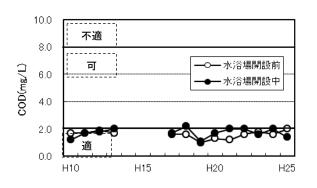


図 4-3-5 COD の経年変化 (アジュール舞子海水浴場※)

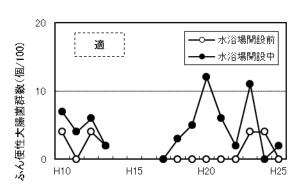


図 4-3-6 ふん便性大腸菌群数の経年変化 (アジュール舞子海水浴場※)

※アジュール舞子海水浴場は、平成14年度から平成16年度まで開設を中止

② 放射性物質濃度調査

平成 25 年度の放射性物質の調査結果を表 4-3-3 に示す。須磨海水浴場及びアジュール舞子海水浴場ともに放射性物質は検出されず、環境省が設定した水浴場の放射性物質に関する指針値(※1)に適合していた。

表 4-3-3 放射性物質濃度調査結果

海水浴場名	核種別放射性物	質濃度(Bq/L)
一	セシウム-134	セシウム-137
須磨海水浴場	不検出※2	不検出※2
アジュール舞子 海水浴場	不検出※2	不検出※2

※1 水浴場の放射性物質に関する指針について(改定版)(平成24年6月8日付環境省通知) 指針値:放射性セシウム(放射性セシウム134及び放射性セシウム137の合計)10Bg/L

※2「不検出」とは定量下限値(セシウム-134、セシウム-137 ともに 1Bq/L)未満のことをいう。

(6) 地点別水質調査結果

(0)	地思加小县	CH/1111	水浴場	開設前			水浴場	聞 設中	
	調査年月日	平成 25 年		平成 25 年	5日15日	平成 25 年		平成 25 年	7月30日
	時刻	10:50	14:25	10:20	14:10	10:40	14:40	11:36	14:03
	採水深度(m)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
須	天 候	晴	晴	晴	晴			晴	
磨	気温 (℃)	18. 2	24. 8	21. 5	22. 5	29. 4	28.8	29. 3	31. 3
海	水温 (℃)	16. 4	16. 1	18. 2	19. 0	26. 8	27. 4	26. 5	25. 8
水	色相	10GY3/4	10GY3/4	10GY3/4	10GY3/4	5G2. 4/3	10GY3/4	10GY3/4	10GY3/4
須磨海水浴場	臭気	無	無	無	無	無	無	無	無
東地	ふん便性大腸菌群数 (個/100mL)	<2	<2	<2	<2	2	2	2	<2
点	COD (mg/L)	4.6	3.3	2. 5	2. 5	2. 2	3. 3	2. 1	1.8
	рΗ	8. 4	8.4	8. 4	8. 4	8. 2	8. 3	8.3	8.3
	油膜の有無	無	無	無	無	無	無	無	無
	時 刻	10:20	14:05	10:00	13:55	10:15	14:20	11:20	13:50
	採水深度(m)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
須磨海水	天 候	晴	晴	晴	晴	曇	曇	曇	曇
磨海	気温 (℃)	18.4	20. 1	24. 0	21.8	29.4	28.7	29.3	31.0
水	水温 (℃)	16.6	16. 9	17. 5	19.7	26.5	26.6	26.0	25.8
浴場	色相	10GY3/4	10GY3/4	10GY3/4	10GY3/4	5G2.4/3	10GY3/4	10GY3/4	10GY3/4
場	臭 気	無	無	無	無	無	無	無	無
中地	ふん便性大腸菌群数 (個/100mL)	<2	<2	<2	<2	2	2	<2	4
点	COD (mg/L)	3. 1	3. 7	3. 0	1.9	2.3	2. 5	2. 5	2.1
	рΗ	8.4	8.4	8. 4	8. 4	8.3	8. 3	8. 3	8.3
	油膜の有無	無	無	無	無	無	無	無	無
	時 刻	10:00	13:50	9:45	13:40	9:55	14:05	11:07	13:37
7-	採水深度(m)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
須磨海.	天 候	晴	晴	晴	晴	曇	曇	曇	曇
海	気温 (℃)	17. 2	21. 7	22. 7	21.4	29. 2	29. 3	28. 7	30. 4
7K	水温 (℃)	16. 0	18. 0	19. 5	18.6	26.5	27.5	25.8	25. 3
浴	色相臭気	5GY3/3	10GY3/4	10GY3/4	10GY3/4	5G2. 4/3	10GY3/4	10G2. 4/3	10GY3/4
場		無	無	無	無	無	無	無	無
西地	ふん便性大腸菌群数 (個/100mL)	<2	<2	<2	<2	4	<2	<2	6
点.	COD (mg/L)	1. 9	3. 3	2.8	2. 1	2. 5	2. 5	2. 0	2.0
	pН	8.3	8.4	8.4	8.4	8.3	8. 3	8.3	8.3
	油膜の有無	無	無	無	無	無	無	無	無
	時 刻	11:30	15:00	10:50	14:45	11:20	13:20	10:30	14:42
ア	採水深度(m)	0.5	0.5	0. 5	0. 5	0.5	0. 5	0.5	0.5
ジ	天 候	晴	晴	晴	晴	曇	曇	曇	曇
ユ	気温 (℃)	19. 7	21. 6	23. 6	23. 2	29. 7	29.8	26.8	29. 0
ルル	水温 (℃)	15. 5	15. 5	19. 0	19. 0	25. 0	24. 4	24. 1	24. 7
舞	色相	5G2. 4/3	5BG2. 4/3	5BG2. 4/3					
舞子海	臭 気	無	無	無	無	無	無	無	無
海水浴場	ふん便性大腸菌群数 (個/100mL)	4	<2	2	<2	<2	2	8	<2
伯坦	COD (mg/L)	1.2	1.6	1.8	1. 7	1.0	1. 6	1. 4	1.5
<i>~///</i>	рΗ	8.3	8.3	8. 3	8. 3	8. 2	8. 2	8. 2	8. 2
	油膜の有無	無	無	無	無	無	無	無	無

4. 六甲山渓流調査

(1) 調査の目的

大都市に隣接していながら身近に自然と触れ合える貴重な場所として多くの市民に親しまれている六甲山の渓流は、市内を流れる多くの河川の源流であり、六甲山上にある多数の施設からの排水が市内河川に与える影響は決して小さくないことから、生活排水対策推進のため、昭和 47 年より渓流の水質について継続監視している。

(2) 調査時期

平成 25 年 9 月 25 日~11 月 13 日 (のべ 9 日間)

(3) 調査地点

10 溪流 19 地点 (図 4-4-1)

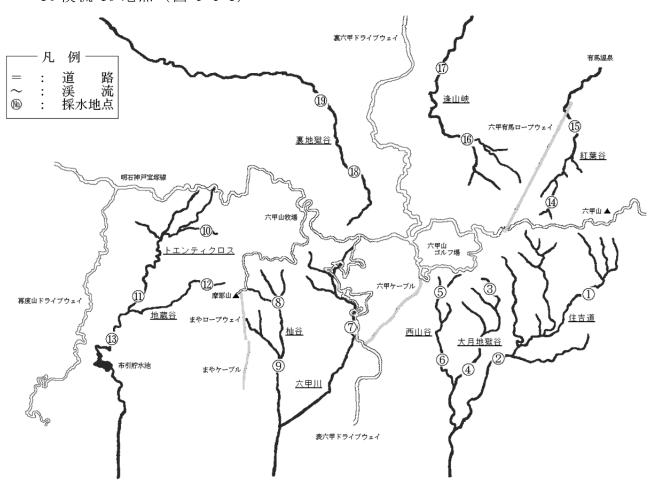
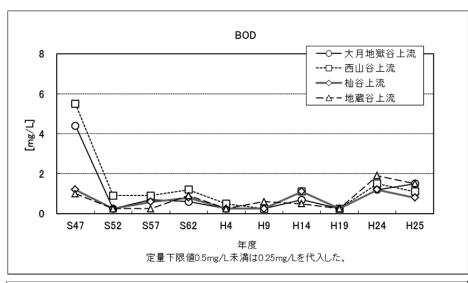


図 4-4-1 六甲山渓流調査地点

(4) 調査項目

流量測定、水質分析(pH、BOD、COD、塩化物イオン、全窒素、全燐、陰イオ


ン界面活性剤、大腸菌群数、ふん便性大腸菌群数 (中流、下流))、水生生物調査 (指標生物による水質評価)

(5) 調査結果

調査結果を河川の環境基準と比較すると、BOD は 5 地点で AA 類型の基準値 (1.0mg/L)を、全地点で A 類型の基準値 (2.0mg/L)を下回っていた。大腸菌群数については 1 地点で AA 類型の基準値 (50MPN/100mL)を、12 地点で A 類型の基準値 (1,000MPN/100mL)を、18 地点で B 類型の基準値 (5,000MPN/100mL)を下回っていた。その他の項目からも、概ね良好な水質であることが確認された。

環境省及び国土交通省によって定められた、水生生物による簡易水質調査法で水質判定を行った結果、全 19 地点において「きれいな水 (I)」と判定された。

調査を開始した昭和 40 年代後半には、水質保全対策が不十分であったため、 渓流の水質汚濁が進み、泡立ちが目立つようなこともあったが、近年、六甲山 渓流の水質は大幅に改善され、若干の変動はあるものの概ね良好な水質で推移 している。

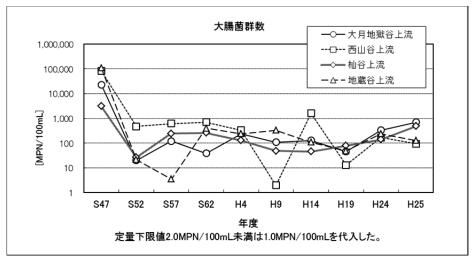


図 4-4-2 代表的な渓流における水質の経年変化

平成25年度六甲山渓流調査地点別結果集計表

表4-4-1

1																		
	測定地点名	水系名	流未河川	流末河川 採取年月日	気 (°C)	☆ (℃)	流量 (m3/s)	外観	рН	BOD (mg/L)	COD (mg/L)	大腸菌群数 (MPN/100mL)	ふん便性 大腸菌群数 (個/100mL)	植 イ イ (mg/L)	全窒素 (mg/L)	全りん (mg/L)	陰イオン 界面活性剤 (mg/L)	環境基準 3項目* で類型
	①住吉道上流	》 4 三 品 上		H25. 11. 07	13.0	12. 2	0.024	無色透明	7.5	<0.5	1. 2	460	I	2	1.0	<0.001	<0.01	A
	②住吉道下流	来 小三 四 中		H25. 11. 07	15.8	14. 5	1.1	無色透明	7.6	9 .0	2.3	3, 300	190	9	0.94	0.004	<0.01	ш
	③大月地獄谷上流		= + +	H25. 10. 03	16. 5	14.7	0.0056	無色透明	7. 4	1.5	1.9	700	ı	∞	1.7	0.008	<0.01	⋖
	4大月地獄谷下流	· · · · · · · · · · · · · · · · · · ·	<u> </u>	H25. 10. 03	20.3	17.5	0.020	無色透明	7.9	1. 4	1.3	3, 100	18	9	1. 4	0.003	<0.01	ш
	⑤西山谷上流	* + + + + + + + + + + + + + + + + + + +		H25. 11. 06	14.0	12.0	0.011	無色透明	7.6	<u></u>	2.0	94	ı	8	1.3	0.031	<0.01	٨
	⑥西山谷下流			H25. 11. 06	14.9	12.0	0.036	無色透明	7.7		1.5	460	26	8	1.5	0.018	<0.01	٨
	⑦六甲川中流			H25. 09. 25	25.8	19.0	0.098	無色透明	7.5	1.0	1.5	3, 300	22	12	1.3	0.010	<0.01	ш
	8和谷上流	六甲川水系	都賀川	H25. 09. 25	24.0	18.7	0.0043	無色透明	7.2	0.8	2. 2	490	14	7	0. 26	0.019	<0.01	A
	③杣谷下流			H25. 09. 25	30.0	21.3	0.028	無色透明	7. 4	1.0	3.1	3, 300	34	7	0. 23	0.013	<0.01	В
- 84	⑩トエンティクロス上流			H25. 10. 17	13.0	13.0	0. 18	無色透明	7. 4	1.3	2.6	2, 200	-	6	0. 58	0.015	<0.01	В
_	⑪トエンティクロス下流	在 三 号	# ====================================	H25. 10. 17	15.5	15.3	0.35	無色透明	7.6	1.6	4.8	14, 000	220	6	0.61	0.023	<0.01	O
	①地蔵谷上流	** \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	Ξ Η	H25. 11. 13	8.0	9. 2	0.0062	無色透明	7.2	1.5	3. 2	130	1	7	0. 23	<0.001	<0.01	A
	③地蔵谷下流			H25. 11. 13	8.9	11. 4	0.14	無色透明	7.6	1.3	2. 4	490	70	8	0.43	<0.001	<0.01	٨
	④紅葉谷上流	24 宋里早	= # #	H25. 10. 28	9.7	11.9	0.013	無色透明	7.1	1.6	1. 4	460	I	3	0.92	0.006	<0.01	٨
	⑤紅葉谷下流		E 世	H25. 10. 28	13.5	13.3	0.27	無色透明	7. 4	1.1	1.9	490	98	3	0.85	<0.001	<0.01	٨
	⑥蓬山峡上流	タイニー圏	有野川	H25. 10. 30	15.0	13.0	60 '0	無色透明	7.5	0.7	1.6	49	-	9	0. 73	<0.001	<0.01	A A
	①蓬山峡下流	K ₹ ₹	武庫 三	H25. 10. 30	16.2	13.6	0.16	無色透明	7.6	0.7	1. 4	330	38	8	0.62	<0.001	<0.01	A
J	⑩裏地獄谷上流	州	# #	H25. 10. 31	11.2	11.5	0.028	無色透明	7.1	1.8	2. 2	140	I	2	0. 25	0.004	<0.01	4
J	⑩裏地獄谷下流	K K K H H	¥ જ્	H25. 10. 31	15.3	13. 2	0.076	無色透明	7.3	1.6	2.3	1, 700	14	14	0. 23	<0.001	<0.01	В
	注:表中の[<]は定量下限値未満を,	量下限値未満を,		[-]は試験未実施を示す。	示す。													

* pH・BOD・大腸菌群数の3項目を河川の環境基準値と比較し、3項目ともあてはまる類型を示した。

表4-4-2 平成25年度六甲山渓流調査水生生物調査に基づく水質評価

		F及八千四次加则且人 			1/3	H/~] _		- <u></u>				Ųμ			ът.						
水質階級	No.	指標生物					測		定		地	<i>(</i> 2)	点		番		号	<i>•</i>			
			(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(1)	18)	(19)
		ナミウズムシ																		<u> </u>	
		サワガニ		•				•		•	•		•		0			•			0
	3	ヒラタカゲロウ類	0					0					0						•		
きれいな水		カワゲラ類	•	0	•	0		0	•	•	0	•	0	•	•	•	0	0		0	•
(I)		ヘビトンボ	0	0		•		0			0			0	0				0		
の指標生物	6	ナガレトビケラ類	0	•	0	•	0	•	0	0				•		•	•	0			0
	7	ヤマトビケラ類														•					
	8	ブユ類								0											
	9	アミカ類																			
	10	ヨコエビ類																			
		合計点数	5	6	5	5	5	7	3	6	4	2	4	5	4	6	3	4	3	3	4
	1	ヒゲナガカワトビケラ類	Δ																		Δ
きれいな水(I)~	2	ニンキ゛ョウトヒ゛ケラ類																			
ややきれいな水(Ⅱ)	3	タニガワカゲロウ類	Δ		Δ					Δ	Δ	Δ		Δ	Δ		Δ		Δ		Δ
	4	チラカゲロウ				Δ			Δ	Δ	Δ	Δ	Δ		Δ	Δ	Δ				Δ
										(指	標	Łι	な	い)							
	1	カワニナ類											0								
	2	コオニヤンマ																			
ややきれいな水	3	コガタシマトビケラ類	•				•		•		0	0	•		•		•		•		
(🛚)	4	オオシマトビケラ	0																		
の指標生物	5	ヒラタドロムシ類									0										
	6	カワニナ																			
		合計点数	3	0	0	0	2	0	2	0	2	1	3	0	2	0	2	0	2	0	0
	1	タニシ類																			
きたない水	2	シマイシビル																			
(Ⅲ)	3	ミズムシ																			
の指標生物	4	ミズカマキリ																			
		合計点数	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	サカマキガイ																			
大変きたない水	2	エラミミズ																			
(IV)	3	アメリカザリガニ																			
の指標生物	4	ユスリカ類																			
12 lab 1/2		<u>ーハックス</u> チョウバエ類																			
		合計点数	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
判完工	t- 7	 〈質階級 [※]	I	I	I	I	ī	I	I	I	I	ī	Ţ	T	I	I	T	I	T	T	T
			1				1			ᆂᄼ			1) Z		1	_lc 55		1	1	1

※判定方法: 水生生物による簡易水質調査法(平成23年度見直し:環境省・国土交通省)で水質階級を判定。 ●は個体数上位2種(同数の場合は最大3種), 〇はその他に確認された種。 △は参考。

●:2点,〇:1点として点数を付け、点数の最も高い階級をその地点の水質階級と判定する。

①住吉道・上流、②住吉道・下流、③大月地獄谷・上流、④大月地獄谷・下流、⑤西山谷・上流、⑥西山谷・下流、⑦六甲川・中流、⑧杣谷・上流、⑨杣谷・下流、⑩トエンティクロス・上流、⑪トエンティクロス・下流、⑫地蔵谷・上流、⑬地蔵谷・下流、⑭紅葉谷・上流、⑮紅葉谷・下流、⑯逢山峡・上流、⑪逢山峡・下流、⑱裏地獄谷・上流、⑲裏地獄谷・下流

5. ゴルフ場で使用される農薬の影響調査

(1) ゴルフ場農薬の指導指針

平成2年5月、国において、ゴルフ場で使用されている農薬による水質汚濁の未然防止を図るため、主要な21項目の農薬成分について、排水に係る暫定的な指導基準を定めた「ゴルフ場で使用される農薬による水質汚濁の防止に係る暫定指導指針について」(環境庁水質保全局長通知。以下「国指針」)が策定された。以後、順次対象とする農薬が追加され、現在では平成25年6月の改正により200項目の農薬成分が対象となっている。

本市では、国指針の策定を受けて、市内ゴルフ場からの農薬の排出実態の把握・指導を行うために、平成3年9月に「神戸市ゴルフ場農薬指導指針(以下「市指針」)」を策定し、国指針の改正に合わせて、順次改正している(平成25年10月に第7次改正)。

市指針では、国指針より最大 10 倍厳しい排出水指導指針値(以下「市指針値」)を設定するとともに、ゴルフ場を営業する事業者に対して、低毒性農薬の選定や、農薬使用量の抑制等を定め、あわせて、市指針値の遵守状況をゴルフ場排出水及び河川等の公共用水域の水質調査により確認している。

(2) ゴルフ場排出水の調査内容

① 調査時期及び地点

(ア) 春季:20 ゴルフ場24地点(イ) 秋季:7 ゴルフ場8地点

② 調査項目

平成 25 年度は、市指針の改正が年度途中であったため、市指針第 6 次改正 (平成 22 年 12 月改正。以下「旧市指針」) で指針値を定めている 69 項目の農薬成分とした (表 4-5-2)。

③ 調査結果

(ア) 春季

2項目の殺虫剤(クロチアニジン、チアメトキサム)、4項目の殺菌剤(アゾキシストロビン、チフルザミド、テブコナゾール、ペンシクロン)、4項目の除草剤(アシュラム、カフェンストロール、シクロスルファムロン、メコプロップカリウム塩)が検出されたが、いずれの農薬成分も市指針値を下回っていた。

(イ) 秋季

3項目の殺虫剤(クロチアニジン、チアメトキサム、チオジカルブ)、3項目の殺菌剤(アゾキシストロビン、チフルザミド、シプロコナゾール)、1項目の除草剤(アシュラム)が検出されたが、いずれの農薬成分も市指針値を下回っていた。

(3) 公共用水域への影響調査の内容

① 調査時期及び地点

(ア) 春季:4河川1湖沼 計5地点(イ) 秋季:1河川 計1地点

丰	4 - 5 - 1	公共	: III	7/5	1式 1.7	な	14	ス	調	本	栅	占
1V	4-11-1	1/\ \	<u>→</u> /H	/1\	JHV. VI	.x.)	V)	/)	н/ПІ	` I	13113	

区分	水系名	河川・湖沼名	調査地点名(公共用水域測定地点 No.)	春季	秋季
	武庫川水系	有馬川	月見橋(No. 6)	0	
河川	加古川水系	淡河川	万代橋(No. 14)	0	_
刊川	加古川水系	志染川	坂本橋(No. 16)	\circ	_]
	明石川水系	明石川	上水源取水口(No. 20)	\circ	\circ
湖沼	加古川水系	衝原湖	取水塔前[表層](No. 補 21)	0	_

② 調査項目

旧市指針で指針値を定めている農薬及び環境省「公共用水域等における農薬の水質評価指針(平成6年4月15日通知。以下「水質評価指針」)」に定められている項目のうち、重複するものを除いた83項目の農薬成分

③ 調査結果

調査結果の詳細を表 4-5-3 に示す。

(ア) 春季

志染川・坂本橋、明石川・上水源取水口、衝原湖・取水塔前では83項目すべて検出されなかった。有馬川・月見橋では2項目の除草剤(プレチラクロール、ブロモブチド)が、淡河川・万代橋では1項目の除草剤(プレチラクロール)がそれぞれ検出されたが、いずれの農薬成分も水質評価指針に定める指針値を下回っていた。それ以外の農薬は検出されなかった。

(イ) 秋季

明石川・上水源取水口では83項目すべて検出されなかった。

農薬の		指針値A	指針値B	指針値C
区分	農薬の名称	(mg/L)	(mg/L)	(mg/L)
>-	アセタミプリド	0.18	0.9	1.8
	アセフェート	0.0063	_	0.063
	イソキサチオン	0.008	_	0.08
	イミダクロプリド	0. 15	0. 75	1. 5
	エトフェンプロックス	0. 082	_	0.82
	クロチアニジン	0. 25	1. 25	2.5
	クロルピリホス	0.002	_	0.02
殺	ダイアジノン	0.005	_	0.05
殺 虫 剤	チアメトキサム	0. 047	0. 235	0. 47
Ηů	チオジカルブ	0.08	_	0.8
	テブフェノジド	0.042	0. 21	0. 42
	トリクロルホン (DEP)	0.005	_	0.05
	ピリダフェンチオン	0.002	_	0.02
	フェニトロチオン	0.003	_	0.03
	ペルメトリン	0. 1	0. 5	1
	ベンスルタップ	0.09	0. 45	0.9
	アゾキシストロビン	0.47	_	4. 7
	イソプロチオラン	0.26	_	2.6
	イプロジオン	0.3	_	3
	イミノクタジンアルベシル酸塩	0.006	0.03	0.06
	イミノクタンン	(イミノクタジ	(イミノクタジ	(イミノクタジ
		ンとして)	ンとして)	ンとして)
	エトリジアゾール (エクロメゾール)	0.004	_	0.04
	オキシン銅(有機銅)	0.04	<u> </u>	0.4
	キャプタン	0.3	<u> </u>	3
	クロロタロニル (TPN)	0.04		0.4
	クロロネブ	0.05		0.5
	ジフェノコナゾール	0.03	0. 15	0.3
	シプロコナゾール	0. 03	0. 15	0.3
-614	シメコナゾール	0.022	0.11	0. 22
殺 菌 剤	チウラム (チラム) チオファネートメチル	0.02		0. 2
剤	<i>ナ</i> オファイートメナル チフルザミド	0.3	1. 5	0.5
	テトラコナゾール	0.05	0. 25 0. 05	0. 5
	テブコナゾール	0. 01 0. 077	0. 385	0. 1
	トリフルミゾール	0.05	0. 383	0. 77
	トルクロホスメチル	0.03	0. 23	2
	バリダマイシン	1. 2	6	12
	ヒドロキシイソキサゾール	1. 2	0	12
	(ヒメキサゾール)	0. 1	0. 5	1
	フルトラニル	0. 23	<u> </u>	2.3
	プロピコナゾール	0.05	_	0.5
	ベノミル	0.02	0. 1	0.2
	ペンシクロン	0.14	—	1.4
	ボスカリド	0.11	0.55	1. 1
	ホセチル	2.3	_	23
	ポリカーバメート	0.03		0.3

農薬の	曲本のなみ	指針值A	指針値B	指針值C
区分	農薬の名称	(mg/L)	(mg/L)	(mg/L)
	メタラキシル	0.058	0. 29	0. 58
殺 菌	及びメタラキシル M	(メタラキシル	(メタラキシル	(メタラキシル
上上		として)	として)	として)
,,,,	メプロニル	0. 1		1
	アシュラム	0. 2	_	2
	エトキシスルフロン	0. 1	0.5	1
	オキサジアルギル	0.02	0. 1	0. 2
	オキサジクロメホン	0.024	0. 12	0. 24
	カフェンストロール	0.007	0.035	0.07
	シクロスルファムロン	0.08	0.4	0.8
	ジチオピル	0.0095	_	0.095
	シデュロン	0.3	_	3
	シマジン (CAT)	0.003	_	0.03
	テルブカルブ (MBPMC)	0.02	_	0. 2
	トリクロピル	0.006	_	0.06
	ナプロパミド	0.03	_	0.3
除	ハロスルフロンメチル	0. 26	_	2.6
除 草 剤	ピリブチカルブ	0. 023	_	0. 23
剤	ブタミホス	0.02	_	0. 2
	フラザスルフロン	0.03	_	0.3
	プロピザミド	0.05	_	0. 5
	ベンスリド (SAP)	0. 1	_	1
	ペンディメタリン	0. 1	_	1
	ベンフルラリン (ベスロジン)	0.08	_	0.8
	メコプロップカリウム塩(MCPP カリウ			
	ム塩)、メコプロップジメチルアミン	0.047		0. 47
	塩 (MCPP ジメチルアミン塩)、メコプ	(メコプロップ	_	(メコプロップ
	ロップPイソプロピルアミン塩及びメ	として)		として)
	コプロップPカリウム塩			
	MCPA イソプロピルアミン塩	0.005	0.025	0.05
	及び MCPA ナトリウム塩	(MCPA として)	(MCPA として)	(MCPA として)
調整剤	トリネキサパックエチル	0.015	0. 075	0. 15

※指導指針値

指針値A:環境省暫定指導指針値(平成22年9月29日改正)の1/10

指針値B:環境省暫定指導指針値の1/2

指針值C:環境省暫定指導指針值

・指導指針値の適用地域

指針値A:武庫川水系、加古川水系、明石川水系及び水道水源となる河川の取水施設の上流

に立地するゴルフ場

指針値B:平成3年9月時点で、上記水系等に立地する既設ゴルフ場(排出施設等の整備が

整うまでの当分の間)

指針値C:その他の水系に立地するゴルフ場

	X 100 XX/11/10/3/10/17		7/1/1X X * 2			(1 /3/220		
				春季			秋季	環境省指針
	河川/湖沼名	有馬川	淡河川	志染川	明石川	衝原湖	明石川	公共用水域
区分	分析項目 地点名	月見橋	万代橋	坂本橋	上水源取水口	表層	上水源取水口	
	放射 横体番号	R-1	R-2	R-3	R-4	R-5	R-4	策定:
	採水日	5月31日	5月24日	5月10日	5月8日	5月10日	10月28日	平成6年4月
	アセタミプリド	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	アセフェート	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	イソキサチオン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	イミダクロプリド	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.2
	エトフェンプロックス	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.08
	クロチアニジン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	クロルピリホス	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.03
	ダイアジノン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.03
殺	チアメトキサム	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
权 虫 剤	チオジカルブ	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	テブフェノジド	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	トリクロルホン (DEP)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.03
	ピリダフェンチオン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.002
	フェニトロチオン (MEP)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	ペルメトリン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	ベンスルタップ	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	カルバリル (NAC)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.05
	ジクロフェンチオン (ECP)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.006
	ブプロフェジン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.01
	マラチオン(マラソン)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.01
	アゾキシストロビン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	イソプロチオラン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	イプロジオン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.3
	イミノクタジンアルベシル酸塩等	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	エトリジアゾール (エクロメゾール)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	オキシン銅(有機銅)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	キャプタン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	クロロタロニル (TPN)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	クロロネブ	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	ジフェノコナゾール	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	シプロコナゾール	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	シメコナゾール	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	チウラム(チラム)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	チオファネートメチル	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	チフルザミド	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
殺	テトラコナゾール	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
菌	テブコナゾール	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
剤	トルフルミゾール	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	トルクロホスメチル	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.2
	バリダマイシン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	ヒドロキシイソキサゾール (ヒメキサゾール)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	フルトラニル	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.2
	プロピコナゾール	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	ベノミル	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	ペンシクロン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.04
	ボスカリド	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	ホセチル	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	ポリカーバメート	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	メタラキシル及びメタラキシルM	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	メプロニル	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.1
	エディフェンホス (EDDP)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.006
	トリシクラゾール	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.1
	フサライド	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.1
	プロベナゾール	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.05
	アシュラム	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	エトキシスルフロン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	オキサジアルギル	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	オキサジクロメホン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	カフェンストロール	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	シクロスルファムロン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	ジチオピル	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	シデュロン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	シマジン (CAT)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	テルブカルブ (MBPMC)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	トリクロピル	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	ナプロパミド	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	ハロスルフロンメチル	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
除	ピリブチカルブ	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
草	ブタミホス	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.004
剤	フラザスルフロン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	5.004
	プロピザミド	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	グロビザミト ベンスリド (SAP)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.1
	ペンスリト (SAP) ペンディメタリン			0.0005>			0.0005>	
		0.0005>	0.0005>		0.0005>	0.0005>		0.1
	ベンフルラリン (ベスロジン)	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	メコプロップカリウム塩(MCPPカリウム塩)等	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	MCPAイソプロピルアミン塩等	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
	エスプロカルブ	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.01
	シメトリン	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.06
	プレチラクロール	0.0005	0.0006	0.0005>	0.0005>	0.0005>	0.0005>	0.04
	ブロモブチド	0.0032	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.04
	メフェナセット	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.009
	モリネート	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.005
战長調	トリネキサパックエチル	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	0.0005>	
整剤		0.0003/	0.0003/	0.0003/	0.0003/	0.0003/	0.0003/	
·/ 17E	値未満の記載は 0 0005\とする							甾位·ma/

6. 化学物質環境実態調査

(1) 調査の概要

神戸市では平成10年度より、人や野生生物の内分泌をかく乱し、生殖機能を阻害するなど、有害な影響を及ぼす可能性が指摘されている環境ホルモン(外因性内分泌かく乱化学物質)について市域の実態を把握するため、独自に調査を行っており、平成21年度からは、内分泌かく乱作用以外に、残留性や使用実態を考慮し、広く化学物質全般の実態把握を行うこととし、環境省の化学物質環境実態調査のモニタリング物質や、従来の環境ホルモン調査で検出された物質、PRTR届出で排出移動量が多かった物質等の中から物質を選定し調査を実施している。平成25年度は、6物質(群)について、海域1地点・河川2地点で水質の調査を実施した。

(2) 調査時期、頻度

平成25年12月10日 いずれの地点も年1回

(3) 調査地点

公共用水域測定地点から選定した、海域1地点・河川2地点(表4-6-1)

	•	1= 4 112 42112=2	***************************************
	No.	調査地点名(公共	用水域地点No.)
河川	1	都賀川•昌平橋	(No.36)
4HJ / I I	2	福田川•福田橋	(No.51)
海域	(3)	兵庫運河・材木橋	(No.64)

表4-6-1 化学物質環境実態調査地点

(4) 調査項目及び調査方法

平成 25 年度は、環境省の化学物質環境実態調査でモニタリングの対象となっている POPs (残留性有機汚染物質)群のうちヘプタクロル類、マイレックス、HCH (ヘキサクロロシクロヘキサン)類、PFOA (パーフルオロオクタン酸)、PFOS (パーフルオロオクタンスルホン酸)、また、POPs群への追加が決定しているHBCD (ヘキサブロモシクロドデカン)類の6物質(群)について調査を行った。調査方法は、環境省化学物質環境実態調査の分析方法、「外因性内分泌攪乱化学物質調査暫定マニュアル (水質、底質、水生生物)」(平成10年10月環境庁水質保全局水質管理課)、「要調査項目等調査マニュアル (水質、底質、水生生物)」(平成15年3月環境省環境管理局水環境部企画課)等によった。

ヘプタクロル類	殺虫剤・シロアリ駆除剤(農薬取締法登録は S47 年失効)環境省モニタリング物質。
マイレックス	海外で難燃剤・殺虫剤として使用されていたことがある。環境省モニタリング物質。
HCH類	殺虫剤(農薬取締法登録は S46 年失効)。環境省モニタリング物質。
PFOA	フッ素樹脂の製造に使用。環境省モニタリング物質。
PFOS	フッ素樹脂の製造に使用。環境省モニタリング物質。
HBCD類	難燃剤等として使用。環境省モニタリング物質。

表4-6-2 平成25年度の調査物質の概要

(5) 調査結果

化学物質環境実態調査結果を表4-6-3に示す。

いずれの検出値も、これまでの全国的な調査結果の範囲内にあり、特に問題となる数値ではなかった。

表 4-6-3 化学物質環境実態調査結果(平成 25 年度)

				河	ЛП	海域	全国調査結果※
			W 11.	都賀川	福田川	兵庫運河	(化学物質環境実態調査)
			単位	昌平橋	福田橋	材木橋	
ヘプタクロ	ヘフ	[®] タクロル	pg/L	2.3	5.2	3.1	ND∼43
ル類	cis-	ヘプタクロルエポキシド	pg/L	39	79	12	0.7~710
	tran	s-ヘプタクロルエポキシド	pg/L	<0.1	<0.1	<0.1	ND~8.0
マイレックス			pg/L	0.4	0.6	0.3	ND~0.8
HCH類		α-НСН	pg/L	47	160	94	9.5~2200
		β-НСН	pg/L	71	190	260	17~2500
		γ-HCH(リンデン)	pg/L	35	97	95	3.0~440
		δ-НСН	pg/L	4.4	16	64	0.5~780
PFOA			ng/L	14	12	4	0.19~50
PFOS			ng/L	5	7	2	0.020~230
HBCD類		α-HBCD	ng/L	0.2	0.7	<0.2	ND∼6.3
		β-HBCD	ng/L	<0.2	<0.2	<0.2	ND∼1.3
		γ -HBCD	ng/L	4. 6	0.2	<0.2	ND~65
		δ-HBCD	ng/L	<0.2	<0.2	<0.2	ND
		ε -HBCD	ng/L	<0.2	<0.2	<0.2	ND

[※] 平成23~25年度版「化学物質と環境」(環境省環境保健部環境安全課)の平成22~24年度(過去3年分) モニタリング調査結果検出状況より引用。

資料編

V 公共用水域経年変化等

1. 測定項目、測定方法及び定量下限値(個別データについては、CD-ROM 又はホームページ参照)

	分析項目	分析方法	単位	有効桁	定量下限値	定量下限値 未満の表記
	気温	規格 7.1 に定める方法	$^{\circ}\!\mathbb{C}$	* 1		
	水温	規格 7.2 に定める方法	$^{\circ}\!\mathbb{C}$	* 1		
_	外観(色相)	規格 8 に定める方法又は標準色票(日本色彩研究 所製作)による方法				
般	臭気	規格 10.1 に定める方法				
項	透視度	規格 9 に定める方法又は衛生試験法・注解 4.1.3.3 2)に定める方法	cm		1	< 1
目	透明度	海洋観測指針(気象庁編)に定める方法	m		0. 1	< 0. 1
	流量	原則として水質調査方法(昭和46年環水管第30号)又は日本工業規格K0094の8.4に定める方法	m ³ / s	2	0. 01	< 0. 01
	全水深		m		0. 1	< 0. 1
		規格 12.1 に定める方法		* 1		
		規格 32 に定める方法	mg/L	2	0. 5	< 0. 5
	(BOD)	規格 21 に定める方法又は上水試験方法に準拠する方法	mg/L	2	0. 5	< 0. 5
止	化学的酸素要求量 (COD)	規格 17 に定める方法	mg/L	2	0. 5	< 0. 5
生		告示付表9に掲げる方法	mg/L	2	1	< 1
活	大腸菌群数	告示別表 2 備考に掲げる方法 河川・湖沼にあっては規格 45.2、45.3 又は 45.4	MPN/100mL	2	2.0×10^{0}	$< 2.0 \times 10^{0}$
環境項	全窒素 (T-N)	何川・何石にめらては焼格 45.2、45.3 又は 45.4 に定める方法 海域にあっては規格 45.4 に定める方法	mg/L	2	0. 04	< 0. 04
境	全燐 (T-P)	規格 46.3 に定める方法	mg/L	2	0.003	< 0. 0 0 3
項。	n-ヘキサン抽出物質	河川・湖沼にあっては規格 24 に定める方法 海域にあっては付表 13 に掲げる方法	mg/L	2	0. 5	< 0. 5
目	全亜鉛	規格 53 に定める方法 (準備操作は規格 53 に定める方法によるほか、告示付表 10 に掲げる方法によることができる。また、規格 53 で使用する水については告示付表 10 の 1(1)による。	mg/L	2	0.001	< 0. 001
	ノニルフェノール	告示付表 11 に掲げる方法	mg/L	2	0.00006	< 0. 00006
	1	告示付表 12 に掲げる方法	mg/L	2	0.0006	< 0. 0006
H	及びその塩(LAS) カドミウム	規格 55.2、55.3 又は 55.4 に定める方法(準備操作は規格 55 に定める方法によるほか、付表 8 に掲げる方法によることができる。)		2	0.0003	< 0. 0003
	全シアン	規格 38.1.2 及び 38.2 に定める方法又は規格 38.1.2 及び 38.3 に定める方法又は厚生労働省告 示別表に掲げる方法	mg/L	2	0. 1	N. D.
健	鉛	規格 54 に定める方法	mg/L	2	0.001	< 0. 0 0 1
康項目	六価クロム	規格 65.2 に定める方法又は厚生労働省告示別表 に掲げる方法	mg/L	2	0.005	< 0. 005
項	砒素	規格 61.2、 61.3 又は 61.4 に定める方法	mg/L	2	0.001	< 0. 0 0 1
目	総水銀	告示付表 1 に掲げる方法	mg/L	2	0.0005	< 0. 0005
	アルキル水銀	告示付表 2 に掲げる方法	mg/L	2	0. 0005	< 0. 0005
	РСВ	告示付表3に掲げる方法	mg/L	2	0. 0005	N. D.
	ジクロロメタン	日本工業規格K0125 の 5.1、5.2 又は 5.3.2 に定める方法	mg/L	2	0. 002	< 0. 002
	四塩化炭素	日本工業規格K0125 の 5.1、5.2、5.3.1、5.4.1 又は5.5に定める方法	mg/L	2	0. 0002	< 0. 0002
	1, 2-ジクロロエタン	日本工業規格K0125 の 5.1、5.2、5.3.1 又は 5.3.2に定める方法	mg/L	2	0. 0004	< 0. 0004
	1, 1-ジクロロエチレン	日本工業規格K0125の5.1、5.2又は5.3.2に定める方法	mg/L	2	0.002	< 0. 002
	シス-1, 2-ジクロロエチレン	日本工業規格 K0125 の 5.1、5.2 又は 5.3.2 に定める方法	mg/L	2	0. 004	< 0. 004
	1, 1, 1-トリクロロエタン	日本工業規格K0125の5.1、5.2、5.3.1、5.4.1 又は5.5に定める方法	mg/L	2	0.0005	< 0. 0005

	分析項目	分析方法	単位	有効桁	定量下限値	定量下限値 未満の表記
	1, 1, 2-トリクロロエタン	日本工業規格K0125 の 5.1、5.2、5.3.1、5.4.1 又は 5.5 に定める方法	mg/L	2	0.0006	< 0. 0006
	トリクロロエチレン	日本工業規格K0125 の 5.1、5.2、5.3.1、5.4.1 又は 5.5 に定める方法	mg/L	2	0.002	< 0. 002
	テトラクロロエチレン	日本工業規格K0125 の 5.1、5.2、5.3.1、5.4.1 又は 5.5 に定める方法	mg/L	2	0.0005	< 0. 0005
	1, 3-ジクロロプロペン	日本工業規格K0125 の 5.1、5.2 又は 5.3.1 に定 める方法	mg/L	2	0. 0002	< 0. 0002
	チウラム	告示付表 4 に掲げる方法	mg/L	2	0.0006	< 0. 0006
健	シマジン	告示付表 5 の第 1 又は第 2 に掲げる方法	mg/L	2	0.0003	< 0. 0003
康	チオベンカルブ	告示付表 5 の第 1 又は第 2 に掲げる方法	mg/L	2	0.002	< 0. 002
健康項品	ベンゼン	日本工業規格K0125 の 5.1、5.2 又は 5.3.2 に定 める方法	mg/L	2	0.001	< 0. 0 0 1
目	セレン	規格 67.2、 67.3 又は 67.4 に定める方法	mg/L	2	0.001	< 0. 0 0 1
	硝酸性窒素及び 亜硝酸性窒素	硝酸性窒素にあっては規格 43.2.1、43.2.3 又は 43.2.5 に定める方法、亜硝酸性窒素にあっては規 格 43.1 に定める方法	mg/L	2	0.05	< 0. 05
	ふっ素	規格 34.1 に定める方法又は規格 34.1(c)(注(b)第三文を除く)に定める方法(懸濁物質及びイオンクロマトグラフ法で妨害となる物質が共存しない場合にあっては、これを省略することができる。)及び告示付表6に掲げる方法	mg/L	2	0.08	< 0. 08
	ほう素	規格 47.1、47.3 又は 47.4 に定める方法	mg/L	2	0.02	< 0. 02
	1,4-ジオキサン	告示付表 7 に掲げる方法	mg/L	2	0.005	< 0. 005
	クロロホルム	日本工業規格K0125 の 5.1、5.2 又は 5.3.1 に定 める方法	mg/L	2	0.001	< 0. 001
	トランス-1, 2- ジクロロエチレン	日本工業規格K0125 の 5.1、5.2 又は 5.3.1 に定 める方法	mg/L	2	0. 004	< 0. 0 0 4
	1,2-9 / 111 1 1 /	日本工業規格K0125 の 5.1、5.2 又は 5.3.1 に定 める方法	mg/L	2	0.006	< 0. 006
要	p - シ゛クロロヘ゛ンセ゛ン	日本工業規格K0125 の 5.1、5.2 又は 5.3.1 に定 める方法	mg/L	2	0.03	< 0. 03
監		通達付表1の第1又は第2に掲げる方法	mg/L	2	0.0008	< 0. 0008
視	ダイアジノン	通達付表1の第1又は第2に掲げる方法	mg/L	2	0.0005	< 0. 0005
項	フェニトロチオン	通達付表1の第1又は第2に掲げる方法	mg/L	2	0.0003	< 0. 0003
目	イソプロチオラン	通達付表1の第1又は第2に掲げる方法	mg/L	2	0. 004	< 0. 004
	オキシン銅	通達付表2に掲げる方法	mg/L	2	0.004	< 0. 0 0 4
	クロロタロニル	通達付表1の第1又は第2に掲げる方法	mg/L	2	0.004	< 0. 004
	プロピザミド	通達付表1の第1又は第2に掲げる方法	mg/L	2	0.0008	< 0. 0008
	EPN	通達付表 1 の第 1 又は第 2 に掲げる方法	mg/L	2	0.0006	< 0. 0006
	ジクロルボス		mg/L	2	0.0008	< 0. 0008
	フェノブカルブ	通達付表1の第1又は第2に掲げる方法	mg/L	2	0.002	< 0. 002
		通達付表1の第1又は第2に掲げる方法	mg/L	2	0.0008	< 0. 0008
	クロルニトロフェン		mg/L	2	0.0001	< 0. 0001
	トルエン	日本工業規格K0125 の 5.1、5.2 又は 5.3.2 に定める方法	mg/L	2	0.06	< 0. 06
	キシレン	日本工業規格K0125 の 5.1、5.2 又は 5.3.2 に定 める方法	mg/L	2	0.04	< 0. 04
	フタル西安シ゛エチルヘキシル	通達付表3の第1又は第2に掲げる方法	mg/L		河川 0 . 0 0 3 海域 0 . 0 0 6	< 0. 0 0 3 < 0. 0 0 6
	ニッケル	規格 59.3 に定める方法又は通達付表 4 若しくは通 達付表 5 に掲げる方法	mg/L	2	0. 001	< 0. 0 0 1

	分析項目	分析方法	単位	有効桁	定量下限値	定量下限値 未満の表記
	モリブデン	規格 68.2 に定める方法又は通達付表 4 若しくは 通達付表 5 に掲げる方法	mg/L	2	0.007	< 0. 007
	アンチモン	通達2付表5の第1、第2又は第3に掲げる方法	mg/L	2	0.0002	< 0. 0002
	塩化ビニルモノマー	通達2付表1に掲げる方法	mg/L	2	0.0002	< 0. 0002
3	エピクロロヒドリン	通達2付表2に掲げる方法	mg/L	2	0.00008	< 0. 00008
要監視項	全マンガン	規格 56.2、56.3、56.4 又は 56.5 に定める方法 (準備操作は規格によるほか、海水など塩類を多 く含む試料を分析する場合にあっては、必要に応 じ試料を希釈することとする。) 又は厚生労働省 告示別表に掲げる方法	mg/L	2	0.02	< 0. 02
目	ウラン	通達2付表4の第1又は第2に掲げる方法	mg/L	2	0. 0004	< 0. 0004
	フェノール	通達3付表1に掲げる方法	mg/L	2	0.001	< 0. 001
	ホルムアルデヒド	通達3付表2に掲げる方法	mg/L	2	0.03	< 0. 03
	4-t-オクチルフェノール	通達4付表1に掲げる方法	mg/L	2	0. 00003	< 0. 00003
	アニリン	通達4付表2に掲げる方法	mg/L	2	0.002	< 0. 002
3	2, 4-ジクロロフェノール	通達4付表3に掲げる方法	mg/L	2	0.0003	< 0. 0003
トリ	ハロメタン生成能	特定水道利水障害の防止のための水道水源水域の 水質の保全に関する特別措置法施行規則の規定に 基づく特定排水基準に係る検定方法(平成7年6 月16日環境庁告示第30号)	mg/L	2	クロロホルム、ブロモジク ロロメタン、ジブロモクロロメタン、ブロモホルム 各 0 . 0 0 0 5	< 0. 0005
и - 1-	フェノール類	規格 28.1 に定める方法又は厚生労働省告示別表 に掲げる方法	mg/L	2	0. 01	< 0. 01
特础	銅	規格 52.2 若しくは 52.4 に定める方法又は厚生労 働省告示別表に掲げる方法	mg/L	2	0.001	< 0. 001
殊項	溶解性鉄	規格 57.2 若しくは 57.4 に定める方法又は厚生労 働省告示別表に掲げる方法	mg/L	2	0.01	< 0. 01
目	溶解性マンガン	規格 56. 2 若しくは 56. 4 に定める方法又は厚生労 働省告示別表に掲げる方法	mg/L	2	0.01	< 0. 01
	クロム	規格 65.1 に定める方法又は厚生労働省告示別表 に掲げる方法	mg/L	2	0.01	< 0. 01
	塩化物イオン	規格 35 に定める方法	mg/L	2	1	< 1
	塩素量	海洋観測指針(気象庁編)に定める方法	‰	* 1		
		規格 42 に定める方法	mg/L	2	0.01	< 0. 01
5	亜硝酸性窒素	規格 43.1 に定める方法	mg/L	2	0.005	< 0. 005
そ	硝酸性窒素	規格 43. 2. 1、43. 2. 3 又は 43. 2. 5 に定める方法	mg/L	2	0.05	< 0. 05
\mathcal{O}	燐酸性燐	規格 46.1 に定める方法	mg/L	2	0.01	< 0. 01
他	陰イオン界面活性剤	規格 30.1 に定める方法又は厚生労働省告示別表 に掲げる方法	mg/L	2	0.01	< 0. 01
\mathcal{O}	一般細菌	厚生労働省告示別表に掲げる方法	集落/mL	2	0. 5	< 0. 5
	導電率(電気伝導度)	規格 13 に定める方法	μS/cm	2	1	< 1
項目	溶解性COD	メンブランフィルター(0. 45 μ m)ろ過の後、規 格 17 に掲げる方法	mg/L	2	0. 5	< 0. 5
	クロロフィルa	海洋観測指針(気象庁編)に定める方法又は上水試 験方法 20.2 に定める方法	mg/m^3	2	0. 1	< 0. 1
	プランクトン	海洋観測指針(気象庁編)に定める方法				
	濁度	厚生労働省告示別表に掲げる方法	度	2	1	< 1
	ATU-BOD	規格 21 に定める方法	mg/L	2	0. 5	< 0. 5
	. 格·日本工業規格	* IZ O 1 O O				

規格:日本工業規格 КО102

告 示:水質汚濁に係る環境基準について(昭和46年12月環境庁告示第59号)

厚生労働省告示:水質基準に関する省令の規定に基づき厚生労働大臣が定める方法(平成15年7月厚生労働省告示261号) 通 達:水質汚濁に係る人の健康の保護に関する環境基準の測定方法及び要監視項目の測定方法について(平成5年4月28日環水規第121号)

通達 2 : 水質汚濁に係る人の健康の保護に関する環境基準等の施行等について (平成 16 年 3 月、環水企発第 040331003 号・環水土発第 040331005 号) 通達 3 : 水質汚濁に係る環境基準についての一部を改正する件の施行等について (平成 15 年 11 月、環水企発第 031105001 号・環水管発第 031105001 号) 通達 4 : 水質汚濁に係る環境基準についての一部を改正する件の施行等について (平成 25 年 3 月、環水大水発第 1303272 号)

*1 : 気温、水温、pH、塩素量の有効桁は、小数点第1位まで。

[※] 平成 25 年 3 月環境省告示第 30 号により、4-t-オクチルフェノール、アニリン及び 2, 4-ジクロロフェノールが水生生物の保全に関する要監視項目に追加されたが、平成 25 年度は測定を行わなかった。

2. 水質経年変化一覧

(1) 河川

① BOD75%水質値(mg/L)

	<u>n Roni</u>	0%/八貝旭(IIIg/ L/																		
No.	河川名	地点名	環境基準 類型	S46	S47	S48	S49	S50	S51	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63
1	武庫川	亀治橋	規至 B		_	_	_	2.3	2.3	2.7	2.2	1.6	1.9	2.1	2.2	2.6	3.1	4.4	3.0	6.3	3.1
	<u> 武庫川</u> 武庫川	大岩橋	В	_	2.9	2.8	2.3	1.4	2.0	2.2	2.7	1.7	2.6	2.5	2.1	3.8	3.3	3.2	2.1	3.4	3.9
	<u> </u>	長尾佐橋		-	5.8	4.3	4.1	3.0	4.0	4.4	5.8	4.5	4.6	3.9	3.5	5.6	4.6	3.1	3.3	4.1	4.0
	有馬川	沖代橋		_	-	-	2.1	1.4	1.8	1.4	1.6	1.0	1.7	1.7	1.9	1.7	1.9	2.1	1.9	1.3	1.7
	有馬川	月見橋		_	3.1	2.6	2.6	1.6	2.2	2.7	2.4	2.4	2.2	2.1	2.1	1.8	2.3	2.0	1.9	1.5	2.2
	有野川	岡場橋		_	-	2.1	4.0	2.5	6.3	9.4	6.2	2.9	5.3	4.4	5.2	5.2	5.7	5.3	5.7	5.2	1.3
	有野川	昭和橋		-	3.6	2.0	2.8	1.4	1.8	4.5	1.7	1.6	2.0	2.4	1.8	1.6	2.0	1.4	1.7	1.4	1.1
9	有野川	流末		_	-	-	-	2.2	5.0	7.0	3.1	2.4	3.0	2.7	3.4	2.6	2.9	1.9	2.5	1.5	1.6
10	八多川	才谷橋		-	2.6	2.4	2.6	1.8	2.8	3.1	2.3	1.9	2.7	2.1	2.2	2.4	2.6	2.6	2.2	2.5	2.1
- 11	長尾川	大江橋		-	4.6	-	2.9	2.2	3.7	4.8	3.5	2.9	3.8	4.2	2.6	3.6	4.4	3.5	5.1	5.2	3.4
補1	有野川	有馬橋		-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.8	4.6	5.8	2.1
補9	武庫川	本流	В	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.5	3.5
	大沢川	万歳橋		-	-	1.8	3.0	1.8	2.7	2.8	2.5	2.0	1.9	2.8	1.7	1.8	2.1	2.3	1.9	1.7	1.5
	淡河川	開通橋		-	3.2	1.9	2.2	1.1	1.3	1.2	1.1	1.0	0.6	0.7	0.6	0.6	1.0	8.0	8.0	0.6	0.7
	淡河川	万代橋		-	11	2.8	1.8	2.5	3.3	2.0	1.2	1.3	1.4	1.3	1.2	1.4	1.6	1.0	1.4	1.2	1.0
	志染川	大滝橋	В	-	12	12	8.8	8.5	13	17	12	10	9.2	8.6	11	9.9	7.9	6.3	7.3	8.9	3.6
	志染川	坂本橋	В	-	-	-	-	5.6	3.6	4.8	3.1	4.4	5.2	5.5	4.6	4.9	5.3	3.1	3.5	3.7	1.3
	箕谷川	小 橋		-	-	-	-	-	-	37	27	23	23	26	25	19	13	13	13	18	6.9
	<u>大池川</u>	出合橋		-	-	-	-	-	-	-	53	21	15	12	19	21	31	20	23	26	20
	志染川	最上流		-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.5	0.6	0.6	0.6
	明石川 	藤原橋	В	-	-	2.4	2.0	2.3	2.1	3.3	2.0	1.6	2.8	2.5	2.3	2.3	2.9	3.8	3.4	2.5	1.7
	明石川	玉津大橋	В	-	-	2.0	2.0	1.2	1.8	1.9	1.5	2.0	1.6	1.8	1.5	1.5	1.6	1.6	1.8	1.5	1.5
	明石川	上水源取水口	В	6.7	4.8	2.4	2.2	1.8	2.0	2.8	1.6	2.1	2.3	1.7	1.9	1.4	1.1	1.3	1.6	1.0	1.2
	<u>木津川</u>	流末		_	_	2.6	1.4	1.3	1.3	1.4	1.9	0.9	1.1	1.1	1.2	1.0	1.1	2.1	2.0	1.4	0.9
	<u>木見川</u> 櫨谷川	流末 流末		-	_	2.0 3.4	1.4 2.1	1.8	1.4	1.1	1.0	0.7 1.9	0.9 1.7	0.9 1.2	0.9	1.0	0.9 1.2	1.4	2.0 1.2	2.1 0.8	1.5 0.9
	<u>慍谷川</u> 天上川	流末		_	_	13	8.8	7.3	7.6	1.8	7.6	1.9	1.7	1.2	1.3	1.1 6.5	4.2	3.2	2.6	2.4	2.5
	<u>ヘエ川 </u> 伊 川	水道橋	С	_	_	3.0	3.5	4.3	3.4	3.5	4.7	3.6	2.9	3.4	2.7	2.5	2.4	3.0	2.9	2.7	2.8
	グーパー・・・ 伊 川	白水橋	С	_	6.4	5.4	4.6	5.6	6.8	3.5	2.8	2.1	2.9	6.3	3.8	3.2	7.9	3.4	12	7.5	4.8
	吃加	二越橋	C	12	18	14	6.3	5.1	11	18	14	12	8.2	8.1	9.9	9.7	11	16	10	15	7.2
	// /:: 明石川	平野橋	В	-	-	-	-	-	-	-		-	-	-	-	-	-	1.7	1.5	1.7	1.0
	刀百刀 明石川	旧水源	В	_	_	_	-	-	_	_	_	_	_	3.6	2.8	4.7	3.5	4.6	5.0	5.8	9.2
	77. [7.] 伊 川	上脇橋	С	-	-	-	-	-	-	-	-	-	-	-	-	_	-	2.2	1.6	2.1	2.0
補22	明石川	西戸田		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28	鰈川	西区岩岡町		-	-	2.4	3.2	1.2	1.9	2.2	1.7	1.4	1.6	1.7	1.6	2.0	1.6	1.4	0.9	1.6	1.9
29	印籠川	西区岩岡町		-	-	1.8	2.3	1.5	2.5	2.0	2.7	1.2	0.7	0.9	1.0	4.2	3.0	2.0	1.9	5.4	5.0
30	要玄寺川	琴田橋		101	53	35	15	7.1	6.8	4.3	5.4	6.6	4.3	4.7	2.5	5.2	4.0	1.8	2.2	1.5	1.9
	天上川	天上川橋		-	110	29	19	9.8	6.8	4.9	3.9	3.1	3.4	3.3	3.1	2.0	1.4	1.2	1.8	6.2	2.3
	住吉川	住吉川橋		-	2.2	2.3	1.6	1.3	1.1	0.9	8.0	0.5	0.5	0.5	<0.5	<0.5	0.5	0.6	0.5	<0.5	0.5
	天神川	辰巳下橋		-	68	68	34	11	16	8.6	7.0	3.8	3.5	3.9	3.0	3.1	4.8	3.2	3.6	4.5	3.6
	石屋川 	石屋川橋		_	31	24	25	12	7.3	3.3	4.0	3.1	2.3	3.2	2.0	1.8	1.8	2.1	1.8	1.9	1.4
	高羽川	玉利橋		-	91	50	59	14	12	9.2	6.0	6.7	4.2	8.6	4.9	6.8	5.7	6.4	7.6	5.4	8.6
	都賀川	<u>昌平橋</u>		_	43	31	30	5.5	6.9	3.9	4.2	3.4	4.2	1.8	1.7	2.2	1.8	1.9	1.7	1.6	1.4
	<u>西郷川</u> 生田川	流末 小野柄橋		_	42	21 47	27	8.1	7.5	7.3	5.3	6.4	4.1	4.1	2.2	3.2	2.8 5.2	2.9	2.6	2.2	3.1
	<u>生田川</u> 布引水源池			_	41		9.8	4.8 0.5	4.1	6.9 0.7	18 0.6	12	4.8 <0.5	8.0 <0.5	4.9 <0.5	3.8		3.0 <0.5		2.0 <0.5	3.4
		山手幹線上流		_	2.0	17	1.0 18	6.5	1.0 4.0	6.1	6.2	4.1	4.6	2.9	4.2	2.7	2.6	3.8	2.5	2.4	3.9
		南所橋		82	58	43	21	24	29	20	23	11	14	16	12	16	11	10	11	12	13
		雪御所公園東		-	7.6	11	13	3.3	5.5	5.6	5.0	7.0	3.7	3.6	3.8	1.7	5.1	4.0	4.5	2.9	1.8
		水源池上流		_	-	4.2	3.4	3.9	2.0	1.8	2.0	1.5	1.1	0.7	0.5	<0.5	0.5	0.7	0.7	<0.5	0.6
	<u> </u>			_	_	11	12	7.8	21	19	20	12	13	14	13	11	6.5	2.5	2.0	2.3	1.0
	烏原水源池			-	3.6	5.0	12	2.8	3.5	4.8	3.2	3.4	3.0	3.1	4.6	2.0	1.3	1.6	1.4	1.9	1.9
		八雲橋		_	63	42	31	22	27	32	21	12	8.4	12	8.2	5.7	4.1	3.8	4.1	3.4	4.0
		若宮橋		-	57	58	42	21	24	29	28	30	13	9.3	7.6	3.8	4.7	3.3	3.7	3.3	2.8
	<u>ルムリハー</u> 千森川	流末		_	-	31	-	5.3	8.3	10	10	8.5	8.1	7.1	6.4	5.3	13	10	9.7	7.0	8.9
		流末		_	9.2	6.9	7.6	2.9	2.6	2.6	2.5	1.9	1.3	1.5	2.4	1.4	2.1	1.1	0.9	0.8	<0.5
		流末		-	81	64	53	44	53	55	57	47	42	25	26	64	46	37	26	13	8.1
		福田橋	Е	75	51	60	33	18	17	13	12	8.8	10	11	11	13	12	7.6	6.8	7.1	10
		山田橋		_	178	107	69	33	32	33	18	18	23	22	15	20	10	8.5	9.5	4.7	3.0
		烏原水源池は、田	刀手口口。在中	+-7.14																	

[※] 烏原水源池は、昭和52年度までは表層、昭和53年度以降は全層(表層と中層の平均値)のデータである。また、平成13年度 から平成21年度まで工事のため貯水しておらず欠測であったが、工事終了に伴い平成22年度より測定を再開している。 * 都市河川のうち小規模河川については、ローリング方式(地点)による隔年調査(2年に1度測定)を実施している。

流域名	S46	S47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
北神水域河川	_	5.4	3.5	3.3	2.6	3.7	6.7	4.9	4.0	4.4	4.6	4.4	4.3	4.0	3.5	3.6	4.2	2.5
西神水域河川	9.4	9.7	4.5	3.3	2.9	3.6	4.4	3.6	3.5	3.4	3.5	3.3	3.0	3.2	3.4	3.5	3.7	2.7
東部都市河川	_	29	27	14	3.9	4.0	3.9	7.7	5.3	3.2	3.4	3.3	3.0	2.5	1.8	1.6	1.8	1.8
西部都市河川	79	55	54	32	21	23	21	21	17	12	12	10	11	9.2	7.0	7.2	7.5	8.6

^{| 13 | 33 | 34 | 32 | 21 | 23 | 21 | 17 | 17 | 12 | 12 |} ※東部都市河川は住吉川·都賀川·生田川、西部都市河川は新湊川·妙法寺川·福田川の平均値。 ※平均値には、補助地点は含まない。

						ı	ı																		
	H1	H2	Н3	H4	H5	Н6	Н7	Н8	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20			H23	H24	
1																									
14 11 10 10 10 10 10 10																									
19															-		-				-		-	-	
14	1.6	1.5	1.4	1.2	1.4	1.7	1.9	1.5	1.0	1.1	1.1	1.1	1.2	1.1	0.8	1.3	1.0	1.2	1.2	1.4	1.1	1.2	1.2	1.5	1.8
16																									
14																									
63 25 34 22 19 56 40 24 17 25 21 <t> <!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t>																									
1.									-														-	-	
1																									-
14																									
14																									
14	2.7	1.5	2.0	1.8	1.3	1.4	1.0	1.0	8.0	0.6	0.6	8.0	0.9	0.7	0.6	8.0	0.7	0.7	1.0	-	-	-	-	-	_
14																							0.9	1.2	
Section Column																							_	_	
Section Sect																									
1-1							1.9	2.1	1.4	1.4	1.4	1.2	1.5	1.6	2.0	2.1	1.9	1.9	1.3	1.4	1.8	2.3	2.1	2.6	2.5
1.	1.5		1.0						1.4	1.4	1.2	1.3	1.3	1.1	1.3	1.4	1.6	1.1	1.2			1.5	1.3	1.6	
1-1																									
1.																									
33 25 21 17 15 16 38 27 22 17 20 32 21 17 30 32 21 17 20 18 19 20 18 19 20 18 14 20 25 14 25 14 27 20 16 18 20 20 10 20 18 18 14 20 25 14 25 18 18 18 15 18 14 20 25 18 20 20 18 18 20 20 20 20 20 20 20 20 18<																									
14																								-	
4.5													2.3		1.6	1.5	1.8			1.4	4.2	2.7	2.5	1.4	
19																							- 0.1		
84 6.9 9.2 8.7 7.6 7.3 2.9 1.9 1.9 3.4 2.1 1.7 0.9 1.6 1.0 1.3 2.2 2.0 3.3 4.6 2.3 3.0 3.6 2.7 4.2 2.8 1.5 1.8 -																									
The color The				8.7	7.6	7.3	2.9	1.9	1.9	3.4	2.1	1.7	0.9	1.6	1.0	1.3	2.2	2.0	3.3	4.6	2.3	3.0	3.6	2.7	4.2
1.4 1.2 1.8 1.4 1.6 1.5 1.9 1.8 1.0 1.3 1.2 1.3 1.6 0.7 0.6 1.6 1.2 1.2 0.9 1.4 1.6 1.7 1.7 1.2 2.8 2.1 2.9 1.9 2.9 1.7 3.6 1.1 1.1 1.0 1.6 1.7 1.0 2.0 2.1 1.6 2.0 2.0 2.0 2.1 2.0 2.0 2.0 2.1 1.3 1.1 1.1 1.3 1.6 1.7 1.0 2.0 2.1 1.3 1.1 1.1 1.3 1.6 1.7 1.0 2.0 2.0 0.5 0.6 0.5 0.6 0.6 0.5 0.6 0.6 0.5 0.6 0.5 0.5 0.6 0.5 1.0 0.0 0.8 0.7 0.5 0.9 0.8 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0																					-	-	-	-	
2.4 2.9 2.7 2.8 5.7 2.6 3.9 2.8 2.4 2.0 4.1 3.1 3.0 2.5 1.7 2.3 2.2 3.9 2.0 2.1 1.6 3.9 2.2 4.7 2.3 2.8 2.1 2.9 1.7 1.6 1.7 3.6 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.5 0.6 0.0 0.5 0.5 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-																								
2.8 2.1 2.9 1.9 2.9 1.7 3.6 1.1 1.1 1.4 1.0 1.6 1.7 1.0 2.0 4.2 1.6 2.3 1.4 * 2.4 * 2.0 * 4.5 0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.6 0.5 0.6 0.6 0.5 0.6 0.6 0.5 0.6 0.6 0.5 0.6 0.8 0.7 0.5 0.0 0.8 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.9 0.0 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0																									
CO.5 CO.5 CO.5 CO.5 CO.5 CO.6 CO.6 CO.9 CO.5 CO.5 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																									
3.0 3.8 5.1 4.3 4.5 1.7 1.3 1.4 2.1 1.7 1.2 1.4 1.6 1.7 0.9 1.0 2.1 2.5 1.6 1.5 1.0 * 1.2 * 1.4 * 5.6 4.6 5.7 3.4 2.8 1.3 1.8 1.2 1.5 2.0 3.4 3.6 3.9 2.4 2.7 4.6 2.8 3.2 * 2.4 * 1.4 * 1.2 1.3 1.2 1.0 1.5 1.2 1.1 0.8 0.6 0.6 0.5 0.7 0.0 0.9 1.0 1.0 1.0 0.9 1.0 1.0 1.0 0.9 1.0 1.0 0.9 1.1 1.0 0.9 1.0 1.0 0.9 1.1 1.2 2.9 2.8			1.7		1.6		2.0	2.1		1.1	1.1	1.3				2.2	2.1	1.3				1.7	*	1.7	
1.8 1.3 1.3 1.3 1.3 1.3 2.4 2.1 2.1 1.7 1.2 1.4 1.6 1.7 0.9 1.0 2.1 2.5 1.6 1.5 1.0 * 1.2 * 1.4 * 5.6 4.6 5.7 3.8 2.7 3.8 2.7 3.8 2.7 4.6 2.8 3.2 * 2.4 * 2.3 * 1.2 1.2 1.0 1.5 1.2 1.1 0.8 0.6 0.5 0.7 0.6 0.5 0.9 1.0 1.0 0.9 1.1 0.6 0.9 1.0 0.6 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.1 0.8 2.0 2.3 2.6 2.6																									
5.6 4.6 5.7 3.8 5.7 3.4 2.8 1.3 1.8 1.2 1.5 2.0 3.4 3.6 3.9 2.4 2.7 4.6 2.8 3.2 * 2.4 * 2.3 * 1.2 1.2 1.3 1.2 1.0 1.5 1.2 1.1 0.8 0.6 0.6 0.5 0.7 0.6 0.5 0.9 1.0 1.0 0.6 0.9 1.0 0.9 1.1 0.9 1.1 0.8 2.7 1.7 2.7 1.6 1.3 1.4 1.8 2.6 2.0 1.5 0.8 1.8 1.4 1.6 1.1 1.9 1.2 0.9 1.2 1.3 * 1.1 * 1.0 * 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.																									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																									
2.6 2.3 3.2 2.6 2.3 2.6 2.4 3.8 2.3 0.8 1.0 1.1 0.8 1.2 1.2 1.1 1.3 1.4 1.2 0.9 0.8 0.9 0.9 1.1 1.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5<																					0.9		0.9		0.8
CO.5 CO.5 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																									
3.9 3.1 2.8 2.9 2.3 2.9 2.6 2.6 1.6 2.4 2.8 2.8 1.7 1.6 3.7 2.1 2.8 2.6 1.3 1.4 * 1.3 * 1.0 * 19 19 17 18 15 17 22 14 4.5 3.6 4.1 6.4 3.8 1.6 1.5 2.0 2.3 1.7 1.5 1.4 1.1 1.5 1.2 1.5 1.8 2.4 0.9 0.8 0.8 0.7 1.2 0.6 0.5 0.5 1.0 0.5<																									
19 19 17 18 15 17 22 14 4.5 3.6 4.1 6.4 3.8 1.6 1.5 2.0 2.3 1.7 1.5 1.4 1.1 1.5 1.2 1.5 1.8 2.4 0.9 0.8 0.8 0.7 1.2 0.6 <0.5 0.5 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5																									
2.4 0.9 0.8 0.8 0.7 1.2 0.6 0.5 0.6 0.6 0.5 0.5 0.6 0.6 0.6 0.8 0.7 0.6 0.6 0.6 0.8 0.7 0.6 0.0 0.6 0.9 0.8 0.7 0.7 0.8 0.6 0.8 0.7 0.6 0.6 0.5 0.6 0.9 0.6 0.9 0.8 0.7 <td></td>																									
1.1 1.1 1.0 1.0 1.0 1.1 1.3 0.7 0.6 0.6 0.8 0.7 0.6 0.9 0.8 0.7 0.7 0.8 0.6 0.8 0.7 0.6 0.6 0.8 0.7 0.7 0.8 0.6 0.8 0.7 0.6 0.6 0.8 0.7 0.7 0.8 0.6 0.8 0.7 0.6 0.6 0.5 1.8 2.0 1.8 2.2 1.6 2.5 2.2 2.7 1.8 1.3 2.1 3.9 -				0.8																					
1.8 2.0 1.8 2.2 1.6 2.5 2.2 2.7 1.8 1.3 2.1 3.9 - 1.4 1.4 1.4 1.4<																									
4.2 2.5 3.0 2.2 3.6 2.6 2.5 2.0 2.0 2.9 2.9 2.3 1.6 1.3 1.8 1.4 * 1.0 * 1.6 * 1.4 3.2 2.9 2.9 2.9 1.9 3.4 3.6 2.1 2.2 1.8 1.5 1.6 1.6 1.6 1.4 1.7 1.6 1.5 1.7 1.8 2.0 1.4 1.6 1.5 1.5 6.8 4.8 4.0 5.4 3.3 4.1 5.3 9.3 3.3 2.7 2.4 4.0 3.9 3.0 4.3 2.6 2.3 2.9 * 2.5 * 1.9 4.2 1.7 1.8 0.8 1.1 1.1 0.8 0.8 0.8 0.7 0.6 0.9 0.6 1.1 1.0 0.7 0.7 1.4 1.4 1.3 * 0.8 * 1.9 5.7 3.9 3.7 3.9 3.5 5.8 3.1 3.6 2.5 2.4																									
3.2 2.9 2.9 2.9 1.9 3.4 3.6 2.1 2.2 1.8 1.5 1.6 1.6 1.6 1.7 1.6 1.5 1.7 1.8 2.0 1.4 1.6 1.5 1.5 6.8 4.8 4.0 5.4 3.3 4.1 5.3 9.3 3.3 2.7 2.4 4.0 3.9 3.0 4.3 2.8 2.6 2.3 2.9 * 2.5 * 1.9 * 4.2 1.7 1.8 0.8 1.1 1.1 0.8 0.8 0.8 0.7 0.6 0.9 0.6 1.1 1.0 0.7 0.7 1.4 1.4 1.3 * 0.8 * 1.4 1.9 5.7 3.9 3.7 3.9 3.5 5.8 3.1 3.6 2.5 2.4 2.3 3.1 2.4 2.1 1.6 1.6 1.6 1.2 2.8 1.5 * 1.3 * 1.8 * 1.8 2.7 16 12 13 14 2.4 2.6 2.6 2.6 1.7 2.3 2.2 1.7 1.7 1.3 1.1 1.6 1.7																									
6.8 4.8 4.0 5.4 3.3 4.1 5.3 9.3 3.3 2.7 2.4 4.0 3.9 3.0 4.3 2.8 2.6 2.3 2.9 * 2.5 * 1.9 * 4.2 1.7 1.8 0.8 1.1 1.1 0.8 0.8 0.8 0.7 0.6 0.9 0.6 1.1 1.0 0.7 0.7 1.4 1.4 1.3 * 0.8 * 1.4 * 1.9 5.7 3.9 3.7 3.9 3.5 5.8 3.1 3.6 2.5 2.4 2.3 3.1 2.4 2.1 1.6 1.6 1.6 2.2 2.8 1.5 * 1.3 * 1.8 * 1.8 2.7 16 12 13 14 2.4 2.6 2.6 2.6 1.7 2.3 2.2 1.7 1.7 1.3 1.1 1.6 1.7 1.7 2.0 1.7 1.8 1.6 1.8																									
5.7 3.9 3.7 3.9 3.5 5.8 3.1 3.6 2.5 2.4 2.3 3.1 2.4 2.1 1.6 1.6 1.6 2.2 2.8 1.5 * 1.3 * 1.8 * 2.7 16 12 13 14 2.4 2.6 2.6 2.6 1.7 2.3 2.2 1.7 1.7 1.3 1.1 1.6 1.7 1.7 2.0 1.7 1.8 1.6 1.8 1.6									3.3																
16 12 13 14 2.4 2.6 2.6 2.6 1.7 2.3 2.2 1.7 1.7 1.3 1.1 1.6 1.7 1.7 2.0 1.7 1.7 1.8 1.6 1.8 1.6 1.8 1.6																									
								2.1		1.9		1.8		1.6		1.4									

H1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
2.4	1.7	2.0	1.7	1.6	1.9	1.9	2.0	1.5	1.3	1.6	1.3	1.3	1.1	1.1	1.4	1.4	1.5	1.5	1.7	1.2	1.6	1.2	1.4	1.7
2.3	2.4	2.0	1.7	1.9	2.0	2.3	1.9	1.7	1.5	1.7	1.5	1.5	1.4	1.2	1.6	1.6	1.7	1.4	1.2	1.7	2.0	1.6	2.1	1.8
1.9	1.8	1.7	1.4	1.7	1.6	1.4	1.8	1.6	0.7	0.8	0.7	0.7	0.8	0.9	1.0	1.0	1.0	1.0	0.7	0.7	0.9	0.9	1.0	1.0
13	11	-11	12	6.4	7.7	9.4	6.2	2.8	2.6	2.6	3.2	2.4	1.5	1.3	1.8	1.9	1.6	1.7	1.6	1.6	1.6	1.5	1.6	1.6

② BOD年平均値(mg/L)

無理	No	河川名	地点名	環境基準	S46	S47	S48	S49	S50	S51	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63
				類型																		
特別 長秋 日本																						
与性性 特別 神性性	_			В	-																	
各野川 日本野田					_																	
特別 野投情 一、「一、「一、「一、「一、「一、「一、「一、「一、「一、「一、「一、「一、「一																						
8 再野川																						
9 封刊					_																	
10 15					_																	
11 長曜 大江株 一、43 27 28 21 29 38 31 27 30 37 66 84 33 32 41 43 30 48 24 14 15 1 1					_	29	22															
接 接 接 接 表 表 表 表					_																	
接換 EANIS EANI					_	-	_		_			-	_	-	-	_						
13				В	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
	12	大沢川	万歳橋		_	_	1.6	2.8	1.5	2.3	2.5	2.0	1.7	1.8	2.7	1.7	1.6	1.8	1.9	1.5	1.5	1.4
	13	淡河川			-	3.8	1.9	1.7	0.9	1.0	1.1	1.0	0.8	0.6	0.7	0.6	0.6	0.8	0.7	0.7	0.6	0.7
16	14	淡河川	万代橋		-	7.4	2.9	1.9	2.2	3.7	1.6	1.1	1.1	1.0	1.1	1.0	1.1	1.4	0.9	1.6	1.0	0.9
	15	志染川	大滝橋	В	_	12	10	12	8.1	12	12	10	7.8	7.0	7.0	9.1	7.9	7.6	8.0	5.9	7.7	3.0
接3日大池川	16	志染川		В	_	-	-	-	4.4	3.5	3.6	2.4	3.6	4.6	3.9	3.7	3.3	3.9	2.3	3.0	2.9	1.1
接名多染川 最上流	17	箕谷川			-	-	-	-	-	-	31	25	21	19	19	21	16	13	16	12	16	6.2
日野石川 藤原橋 日 一 一 19 17 19 18 24 18 15 21 20 20 21 20 26 25 19 13 19 19 19 19 17 19 18 24 18 15 20 12 18 16 13 14 14 15 11 19 19 15 26 12 14 14 16 18 17 15 15 18 17 17 18 18 17 18 18					_	-				-	-	42	15	13		15		22				
日野西川 三球大橋 B - - 22 19 11 15 20 12 18 17 15 14 16 13 14 14 16 10 10 17 17 17 18 17 17 18 18	補4	志染川	最上流		-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.6	0.6	0.6	0.6
					_	-			1.9					2.1		2.0	2.1					1.3
日本語																						
				В	5.2	4.7	1.9	1.8	1.7			1.5		1.8	1.5	1.6	1.2	1.0	1.2			0.9
23 据令川 元末					-		1.9									1.0	0.9					
24 天上川 茂末 - 8.7 8.7 5.6 6.7 7.5 6.8 6.8 12 10 9.9 6.2 3.5 2.7 2.1 1.9 1.9 25 月					-	-										0.8						
日本語画																						
26 伊 川 白水橋 C - 62 52 63 40 60 26 21 23 24 55 32 29 69 69 65 52 63 27 27 月 11 24 24 25 24 25 24 25 24 25 25																						
日本語語																						
横																						
接 接 接 接 接 接 接 接																						
					-																	
編22 明石川 西戸田 - - - - - - - - -																						
西区岩岡町				C																	1.8	
四番川 西区岩岡町 一 一 1.6 1.8 1.2 1.9 1.7 2.0 1.2 0.6 1.6 1.3 4.2 2.7 1.4 3.1 4.1 4.4 30 要玄寺川 琴田橋 75 47 31 15 6.2 5.4 4.3 4.9 6.3 4.5 4.1 2.8 8.5 3.1 1.6 1.6 1.4 2.0 31 天上川 天上川橋 一 88 34 21 6.9 5.5 4.5 3.6 2.8 2.7 2.8 2.2 1.8 1.1 1.3 1.1 1.4 8.4 2.0 32 住吉川 住吉川橋 一 2.8 2.0 1.3 1.2 1.3 0.9 0.7 0.6 0.5 0.6 0.5 0.5 0.5 0.6 0.5 0.5 0.6 0.5 0.5 0.6 0.5 0.5 0.6 0.5 0.5 0.6 0.5 0.5 0.6 0.5 0.5 0.6 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.6 0.5																					1.5	
30 要玄寺川 琴田橋					_																	
					75																	
32 住吉川 住吉川橋 - 2.8 2.0 1.3 1.2 1.3 0.9 0.7 0.6 0.5 0.5 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.5 0.6 0.5 0.6	_																					
33 天神川 辰巳下橋 - 63 58 43 8.4 14 7.5 5.1 3.3 3.1 3.4 2.7 2.9 3.8 3.4 3.8 3.7 3.2 34 石屋川 石屋川橋 - 27 52 39 11 5.6 3.0 2.7 2.7 1.8 2.3 1.7 1.5 1.9 1.8 1.6 1.4 1.1 35 高羽川 玉利橋 - 81 53 50 11 12 7.9 5.4 8.7 5.8 12 4.0 7.8 5.7 6.0 6.0 6.6 7.5 36 都賀川 昌平橋 - 40 53 25 4.6 6.5 4.3 3.6 3.1 3.1 2.7 6.1 1.9 1.5 1.5 1.3 1.4 1.3 37 西郷川 流末 - 49 48 25 5.2 6.0 7.3 5.2 4.4 3.4 3.3 2.1 2.8 2.2 2.7 2.6 1.8 2.6 1.8 2.6 39 布引水源池 水源池上流 - 2.1 0.9 1.1 0.5 1.1 0.8 0.6 0.9 0.7 0.5 0.					_																	
五屋川 石屋川橋 -					_																	
五字 五列橋																						
36 部質川 昌平橋 - 40 53 25 4.6 6.5 4.3 3.6 3.1 3.1 2.7 6.1 1.9 1.5 1.5 1.3 1.4 1.3 37 西郷川 流末 - 49 48 25 5.2 6.0 7.3 5.2 4.4 3.4 3.3 2.1 2.8 2.2 2.7 2.6 1.8 2.6 38 生田川 小野柄橋 - 32 39 8.8 4.4 2.8 6.6 16 14 3.7 5.8 4.3 3.2 3.8 2.6 2.9 1.6 3.1 3.1 3.1 分野柄橋 - 2.1 0.9 1.1 0.5 1.1 0.8 0.6 0.9 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5					_																	
37 西郷川 流末 - 49 48 25 5.2 6.0 7.3 5.2 4.4 3.4 3.3 2.1 2.8 2.2 2.7 2.6 1.8 2.6 38 生田川 小野柄橋 - 32 39 8.8 4.4 2.8 6.6 16 14 3.7 5.8 4.3 3.2 3.8 2.6 2.9 1.6 3.1 39 布引水源池 水源池上流 - 2.1 0.9 1.1 0.5 1.1 0.8 0.6 0.9 0.7 <0.5 <0.5 0.5 0.5 0.5 0.5 <0.5 0.5 <0.5 0.5 40 宇治川 山手幹線上流 16 15 5.4 3.7 4.9 4.5 3.7 4.2 3.0 3.4 2.6 2.6 3.1 2.3 2.2 4.8 41 新湊川 南所橋 54 41 30 20 20 23 22 20 11 12 12 12 12 11 9.6 9.0 11 12 42 天王谷川 雪御所公園東 - 9.0 11 12 2.5 4.4 5.4 5.2 7.1 3.1 2.7 3.3 1.8 4.1 4.2 3.7 3.5 1.9 43 鳥原川 水源池上流 4.4 6.7 3.1 1.7 1.6 1.7 1.4 0.8 0.6 0.6 0.5 0.6 0.7 0.7 0.7 0.7 0.6 44 イヤガ谷川 水源池上流 11 11 6.5 14 17 18 10 8.5 10 11 7.6 5.3 2.0 1.6 1.5 0.9 45 島原水源池 取水塔前* - 5.7 5.5 8.5 1.9 3.0 3.0 2.2 2.5 2.2 2.4 3.5 2.0 1.0 1.6 1.3 1.7 1.5 46 苅藻川 八雲橋 - 48 45 32 17 23 2.7 21 11 7.8 8.3 6.8 4.9 4.0 3.5 3.4 3.3 3.1 47 沙法寺川 荒香橋 - 48 45 32 17 2.3 2.7 2.1 1.1 7.8 3.0 3.7 3.5 3.1					-																	
38 生田川 小野柄橋 - 32 39 8.8 4.4 2.8 6.6 16 14 3.7 5.8 4.3 3.2 3.8 2.6 2.9 1.6 3.1 39 布引水源池 水源池上流 - 2.1 0.9 1.1 0.5 1.1 0.8 0.6 0.9 0.7 <0.5 <0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5					_																	
39 布引水源池 水源池上流	_				_																	
41 新湊川 南所橋 54 41 30 20 20 23 22 20 11 12 12 12 12 12 11 9.6 9.0 11 12 42 天王谷川 雪御所公園東 - 9.0 11 12 2.5 4.4 5.4 5.2 7.1 3.1 2.7 3.3 1.8 4.1 4.2 3.7 3.5 1.9 43 鳥原川 水源池上流 - - 4.4 6.7 3.1 1.7 1.6 1.7 1.4 0.8 0.6 0.6 0.5 0.6 0.7 0.7 0.7 0.7 44 イヤガ谷川 水源池上流 - - 4.4 6.7 3.1 1.7 1.6 1.7 1.4 0.8 0.6 0.6 0.5 0.6 0.7 0.7 0.7 0.6 44 イヤガ谷川 水源池上流 - 5.7 5.5 8.5 1.9 3.0 3.0 2.2 2.5 2.2 2.4 3.5 2.0 1.0 1.6 1.3 1.7 1.5 46 苅藻川 八雲橋 - 51 42 42 19 23 27 21 11 7.8 8.3 6.8 4.9 <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					_								0.9									
42 天王谷川 雪御所公園東 - 9.0 11 12 2.5 4.4 5.4 5.2 7.1 3.1 2.7 3.3 1.8 4.1 4.2 3.7 3.5 1.9 43 鳥原川 水源池上流 - - 4.4 6.7 3.1 1.7 1.6 1.7 1.4 0.8 0.6 0.6 0.5 0.6 0.7 0.7 0.7 0.6 44 イヤガ谷川 水源池上流 - - 11 11 6.5 14 17 18 10 8.5 10 11 7.6 5.3 2.0 1.6 1.5 0.9 45 烏原水源池 取水塔前* - - 5.7 5.5 8.5 1.9 3.0 3.0 2.2 2.5 2.2 2.4 3.5 2.0 1.0 1.6 1.5 0.9 45 角藻川 八雲橋 - 5.1 42 42 19 23 2.7 21 11 7.8 8.3 6.8 4.9 4.0 3.5 3.4 3.3 3.1 47 妙法寺川 <td< td=""><td>40</td><td>宇治川</td><td>山手幹線上流</td><td></td><td>_</td><td>-</td><td>16</td><td>15</td><td>5.4</td><td>3.7</td><td>4.9</td><td>4.5</td><td>3.7</td><td>4.2</td><td>3.0</td><td>3.4</td><td>2.6</td><td>2.6</td><td>3.1</td><td>2.3</td><td>2.2</td><td>4.8</td></td<>	40	宇治川	山手幹線上流		_	-	16	15	5.4	3.7	4.9	4.5	3.7	4.2	3.0	3.4	2.6	2.6	3.1	2.3	2.2	4.8
43 島原川 水源池上流 - - 4.4 6.7 3.1 1.7 1.6 1.7 1.4 0.8 0.6 0.6 0.5 0.6 0.7 0.7 0.7 0.6 44 イヤガ谷川 水源池上流 - - 11 11 6.5 14 17 18 10 8.5 10 11 7.6 5.3 2.0 1.6 1.5 0.9 45 島原水源池 取水塔前* - 5.7 5.5 8.5 1.9 3.0 3.0 2.2 2.5 2.2 2.4 3.5 2.0 1.0 1.6 1.3 1.7 1.5 46 苅藻川 八雲橋 - 51 42 42 19 23 27 21 11 7.8 8.3 6.8 4.9 4.0 3.5 3.4 3.3 3.1 47 妙法寺川 若宮橋 - 48 45 32 17 23 25 27 22 12 8.6 6.3 4.6 4.0 3.0 2.9 3.0 2.4 48 千森川			南所橋		54	41	30	20	20	23	22	20	11	12	12	12	12	11	9.6	9.0	11	12
44 イヤガ谷川 水源池上流 - - 11 11 6.5 14 17 18 10 8.5 10 11 7.6 5.3 2.0 1.6 1.5 0.9 45 烏原水源池 取水塔前* - 5.7 5.5 8.5 1.9 3.0 3.0 2.2 2.5 2.2 2.4 3.5 2.0 1.0 1.6 1.3 1.7 1.5 46 苅藻川 八雲橋 - 51 42 42 19 23 27 21 11 7.8 8.3 6.8 4.9 4.0 3.5 3.4 3.3 3.1 47 妙法寺川 若宮橋 - 48 45 32 17 5.6 7.0 8.1 8.0 7.0 5.2 5.9 5.3 10 8.3 9.5 8.5 10 48 千森川 流末 - 49 32 17 5.6 7.0 8.1 8.0 7.0 5.2 5.9 5.3 10 8.3 9.5 8.5 10 49 - 0谷川<	42	天王谷川	雪御所公園東		_	9.0	11	12	2.5	4.4	5.4	5.2	7.1	3.1	2.7	3.3	1.8	4.1	4.2	3.7	3.5	1.9
45 島原水源池 取水塔前* - 5.7 5.5 8.5 1.9 3.0 3.0 2.2 2.5 2.2 2.4 3.5 2.0 1.0 1.6 1.3 1.7 1.5 46 対薬川 八雲橋 - 51 42 42 19 23 27 21 11 7.8 8.3 6.8 4.9 4.0 3.5 3.4 3.3 3.1 47 妙法寺川 若宮橋 - 48 45 32 17 5.6 7.0 8.1 8.0 7.0 5.2 7.2 5.9 5.3 10 8.3 9.5 8.5 10 49 一の谷川 流末 - 49 32 17 5.6 7.0 8.1 8.0 7.0 5.2 7.2 5.9 5.3 10 8.3 9.5 8.5 10 49 一の谷川 流末 - 7.5 5.2 5.0 2.2 2.4 2.1 3.0 1.7 1.3 1.1 2.1 1.4 1.8 1.2 1.1 0.8 0.	43	烏原川	水源池上流		_	_	4.4	6.7	3.1	1.7	1.6	1.7	1.4	0.8	0.6	0.6	0.5	0.6	0.7	0.7	0.7	0.6
46 対藻川 八雲橋 - 51 42 42 19 23 27 21 11 7.8 8.3 6.8 4.9 4.0 3.5 3.4 3.3 3.1 47 妙法寺川 若宮橋 - 48 45 32 17 23 25 27 22 12 8.6 6.3 4.6 4.0 3.0 2.9 3.0 2.4 48 千森川 流末 - 49 32 17 5.6 7.0 8.1 8.0 7.0 5.2 7.2 5.9 5.3 10 8.3 9.5 8.5 10 49 - 0谷川 流末 - 7.5 5.2 5.0 2.2 2.4 2.1 3.0 1.7 1.3 1.1 2.1 1.4 1.8 1.2 1.1 0.8 0.7 50 塩屋谷川 流末 - 58 60 52 31 37 39 35 35 31 32 25 47 37 27 21 12 11 51 福田川 福田川 百橋橋 E 56 54 39 28 16 14 12 10 8.5 9.6 8.5 <td< td=""><td></td><td></td><td></td><td></td><td>_</td><td>-</td><td>11</td><td>11</td><td>6.5</td><td>14</td><td>17</td><td>18</td><td>10</td><td>8.5</td><td>10</td><td>11</td><td>7.6</td><td>5.3</td><td>2.0</td><td>1.6</td><td>1.5</td><td>0.9</td></td<>					_	-	11	11	6.5	14	17	18	10	8.5	10	11	7.6	5.3	2.0	1.6	1.5	0.9
47 妙法寺川 若宮橋 - 48 45 32 17 23 25 27 22 12 8.6 6.3 4.6 4.0 3.0 2.9 3.0 2.4 48 千森川 流末 - 49 32 17 5.6 7.0 8.1 8.0 7.0 5.2 7.2 5.9 5.3 10 8.3 9.5 8.5 10 49 - ○谷川 流末 - 7.5 5.2 5.0 2.2 2.4 2.1 3.0 1.7 1.3 1.1 2.1 1.4 1.8 1.2 1.1 0.8 0.7 50 塩屋谷川 流末 - 58 60 52 31 37 39 35 35 31 32 25 47 37 27 21 12 11 51 福田川 福田橋 E 56 54 39 28 16 14 12 10 8.5 9.6 8.5 10 12 12 7.1 5.8 6.6 9.6 52 山田川 山田 - 137 76 129 27 24 25 16 16 19 <					-	5.7	5.5	8.5	1.9	3.0	3.0	2.2	2.5	2.2	2.4	3.5	2.0	1.0	1.6	1.3	1.7	1.5
48 千森川 流末 - 49 32 17 5.6 7.0 8.1 8.0 7.0 5.2 7.2 5.9 5.3 10 8.3 9.5 8.5 10 49 一の谷川 流末 - 7.5 5.2 5.0 2.2 2.4 2.1 3.0 1.7 1.3 1.1 2.1 1.4 1.8 1.2 1.1 0.8 0.7 50 塩屋谷川 流末 - 58 60 52 31 37 39 35 35 31 32 25 47 37 27 21 12 11 51 福田川 福田橋 E 56 54 39 28 16 14 12 10 8.5 9.6 8.5 10 12 12 7.1 5.8 6.6 9.6 52 山田川 山田橋 - 137 76 129 27 24 25 16 16 19 17 14 15 10 7.6 7.7 4.6 2.9			八雲橋		_	51	42	42	19	23	27	21	11	7.8	8.3	6.8	4.9	4.0	3.5		3.3	3.1
49 一の谷川 流末 - 7.5 5.2 5.0 2.2 2.4 2.1 3.0 1.7 1.3 1.1 2.1 1.4 1.8 1.2 1.1 0.8 0.7 50 塩屋谷川 流末 - 58 60 52 31 37 39 35 35 31 32 25 47 37 27 21 12 11 51 福田川 福田橋 E 56 54 39 28 16 14 12 10 8.5 9.6 8.5 10 12 12 7.1 5.8 6.6 9.6 52 山田川 山田橋 - 137 76 129 27 24 25 16 16 19 17 14 15 10 7.6 7.7 4.6 2.9					_																	
50 塩屋谷川 流末 - 58 60 52 31 37 39 35 35 31 32 25 47 37 27 21 12 11 51 福田川 福田橋 E 56 54 39 28 16 14 12 10 8.5 9.6 8.5 10 12 12 7.1 5.8 6.6 9.6 52 山田川 山田橋 - 137 76 129 27 24 25 16 16 19 17 14 15 10 7.6 7.7 4.6 2.9					_																	
51 福田川 福田橋 E 56 54 39 28 16 14 12 10 8.5 9.6 8.5 10 12 12 7.1 5.8 6.6 9.6 52 山田川 山田橋 - 137 76 129 27 24 25 16 16 19 17 14 15 10 7.6 7.7 4.6 2.9					_																	
52 山田川 山田橋 - 137 76 129 27 24 25 16 16 19 17 14 15 10 7.6 7.7 4.6 2.9					-																	
				E	56																	
※ 良原水海池は、昭和50年度までは主席、昭和50年度以際は今屋(主屋と中屋の平均値)のデータでもる。また、平成10年度	52				-															7.7	4.6	2.9

[※] 烏原水源池は、昭和52年度までは表層、昭和53年度以降は全層(表層と中層の平均値)のデータである。また、平成13年度 から平成21年度まで工事のため貯水しておらず欠測であったが、工事終了に伴い平成22年度より測定を再開している。 * 都市河川のうち小規模河川については、ローリング方式(地点)による隔年調査(2年に1度測定)を実施している。

流域名	S46	S47	S48	S49	S50	S51	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63
北神水域	-	4.9	3.0	3.4	2.3	3.2	5.3	4.3	3.5	3.6	3.7	3.8	3.5	3.4	3.5	3.1	3.5	2.1
西神水域	7.6	8.3	3.7	3.2	2.6	3.1	3.4	3.1	2.8	3.0	3.0	2.9	2.8	2.7	3.0	2.8	2.7	2.4
東部都市河川水域	_	25	31	12	3.4	3.5	3.9	6.8	5.9	2.4	3.0	3.6	1.9	1.9	1.6	1.6	1.2	1.7
西部都市河川水域	55	48	38	27	18	20	20	19	14	11	9.7	9.4	9.5	9.0	6.6	5.9	6.9	8.0

[※]東部都市河川は住吉川・都賀川・生田川、西部都市河川は新湊川・妙法寺川・福田川の平均値。 ※平均値には、補助地点は含まない。

H													I			l	l				ſ	l	I		
	H1	H2	НЗ	Н4	H5	Н6	H7	Н8	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	H24	H25
1																									
1																									
14								-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	
19		1.2					1.6	1.4	1.0	1.0	1.0	0.9	1.0	0.8	0.8	1.2	1.0	1.1	0.9	1.1	0.9	1.0	0.9	1.1	1.5
15																								-	
19																									
35 28 34 29 25 32 51 55 37 48 55 37 26 37 28 33 32 33 32 30 30 30 30																									
51 51 52 20 20 10 18 12 20																									
15									_								_			-	_	-		-	
0.6 0.8 0.8 0.9 0.9 0.7 10. 0.9 10 0.9 10 0.9 10 0.9 0.7 0.8 0.8 0.7 0.8 0.8 0.9 0.9																									
19																					0.9	1.4	0.8	1.2	
17																					0.9	1.2	1.0	1.1	
15																									
18																									
0.6																									_
2.6 1.8 1.6 1.4 1.3 1.2 1.6 1.7 1.4 1.2 1.3 1.1 1.2 1.2 1.4 1.0 1.0 1.3 1.8 2.4 1.0 1.2 1.2 1.1 1.0 1.2 1.2 1.1 1.0 1.3 1.3 1.0 1.1 1.0 1.2 1.1 1.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td>									_													_			
14							1.6	1.7	1.4	1.2	1.3	1.1	1.2	1.4	1.5	1.8	1.6	1.9	1.3	1.3	1.8	2.4	1.9	2.7	2.5
19																									1.5
1.1																									
12																									
23 22 23 1.6 1.4 1.6 3.2 2.0 2.6 1.4 1.4 1.4 1.9 1.6 1.6 2.0 2.1 1.7 2 2 1.6 1.5 1.9 1.5 1.7 1.3 1.7 1.4 1.4 1.6 1.6 1.6 1.6 1.6 1.2 2.0 1.8 1.4 1.6 1.5 1.9 1.2 1.7 1.4 1.4 1.6 1.0 1.2 1.7 1.7 1.6 1.6 1.6 1.8 1.2 2.1 1.5 1.6 1.0 1.2 1.2 1.5 1.1 1.2 1.7 1.6 1.6 1.6 1.9 1.8 1.0 2.0																									
5.1 4.5 4.6 1.6 1.6 2.1 2.2 1.6 1.4 1.6 2.4 1.8 1.5 1.6 1.0 1.2 1.2 1.5 1.6 1.0 1.2 1.2 1.5 1.1 1.2 1.7 1.7 1.6 1.6 6. 1.9 1.8 - </td <td></td>																									
4.4 2.5 2.4 2.0 2.4 2.9 2.3 1.6 2.4 1.6 1.0 1.2 1.2 1.2 1.5 1.5 1.7 1.7 1.7 1.6 1.6 1.6 1.9 1.8 - <t></t>													1.9				1.7	1.4	1.4	1.2		2.5	1.9	1.2	
1.6 1.9 1.8																			- 1.5					-	
6.7 5.4 7.8 7.6 5.3 5.5 3.2 1.8 2.6 2.6 2.5 1.9 0.8 1.7 0.9 1.4 2.1 1.8 2.5 3.6 1.7 3.4 2.4 2.8 3.6 2.3 1.4 1.4 -									2.3				1.5		1.0		1.2							1.0	
						5.5	3.2	1.8	2.6		2.5		0.8		0.9		2.1						2.4	2.8	
1.4	2.3	1.4					-										_			-		-	-	-	
22 2.4 2.8 6.3 1.7 3.1 2.2 2.1 1.6 3.0 3.0 2.3 3.0 1.9 2.3 1.8 5.2 2.2 3.6 2.2 19 1.8 2.6 1.8 2.3 1.4 3.3 1.3 1.1 1.4 1.0 1.5 1.6 1.4 1.0 2.0 3.6 1.5 2.2 1.3 * 2.1 * 2.2 * 2.0 2.9 2.8 1.7 1.7 1.8 1.8 2.1 1.2 1.1 0.9 1.2 1.5 1.8 1.4 1.0 1.5 1.6 0.5 0.5 0.6 0.7 0.6 0.7 0.6 0.6 0.8 0.7 0.6 0.7 0.6 0.6 0.8 0.7 0.7 0.8 0.9 1.6 4.3 1.1 1.6 2.1 1.4 0.9 1.2 1.4 1.1 1.0 0.9 2.2 <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-																								
1.9 1.8 2.6 1.8 2.3 1.4 3.3 1.3 1.1 1.4 1.0 1.5 1.6 1.4 1.0 2.0 3.6 1.5 2.2 1.3 * 2.1 * 2.2 * 2.0 2.9 2.8 1.7 1.7 1.8 1.8 2.1 1.2 1.1 0.9 1.2 1.5 1.8 1.4 2.0 2.0 1.6 1.9 1.6 * 1.3 * 1.5 * 2.2 1.8 1.6 2.1 1.4 0.9 1.2 1.5 1.8 2.4 3.3 2.0 2.5 1.4 1.9 1.2 1.4 1.1 0.9 1.3 2.0 2.5 1.4 1.9 1.2 * 1.1 1.0 9.2 1.4 1.1 0.9 1.3 2.0 2.5 1.4 1.9 1.2 * 1.1 1.1 0.9 1.2 1.4 1.1 0.9 1.3<																									
2.0 2.9 2.8 1.7 1.7 1.8 1.8 2.1 1.2 1.1 0.9 1.2 1.5 1.8 1.4 2.0 2.0 1.6 1.9 1.6 * 1.3 * 1.5 * 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.7 0.6 0.6 0.8 0.7 0.6 0.6 0.8 0.7 0.6 0.8 0.7 0.7 0.8 2.9 3.1 5.1 4.0 3.1 5.1 4.0 9.1 2.1 1.1 1.0 0.9 1.2 1.1 1.0 0.9 0.6 0.7 0.5 0.7 0.5 0.9 0.9 0.8																									
2.9 3.1 5.1 4.0 3.0 2.2 1.3 1.5 1.8 2.4 3.3 2.3 0.9 2.3 1.5 3.2 4.2 4.3 3.7 2.3 * 2.3 * 1.6 * 1.4 1.2 1.2 1.0 2.1 1.6 2.1 1.4 0.9 1.2 1.4 1.1 0.9 2.5 1.4 1.9 1.2 * 1.1 * 1.5 * 4.4 5.0 4.4 4.1 2.4 2.6 2.4 1.6 1.7 1.2 1.4 1.7 4.8 4.0 3.2 2.1 3.0 3.4 2.4 3.5 * 2.5 * 2.2 * * 2.2 1.4 1.1 1.0 9 0.8 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8																					*		*		
1.4 1.2 1.2 1.2 1.0 2.1 1.6 2.1 1.4 0.9 1.2 1.4 1.0 9 1.3 2.0 2.5 1.4 1.9 1.2 * 1.1 * 1.5 * 4.4 5.0 4.4 4.1 2.4 1.6 1.7 1.2 1.4 1.7 4.8 4.0 3.2 2.1 3.0 3.4 2.4 3.5 * 2.5 * 2.2 * 1.1 1.0 1.3 1.0 0.9 1.2 1.1 1.0 0.9 0.6 0.7 0.5 0.7 0.5 0.9 0.9 0.8 0.6 0.8<																									
4.4 5.0 4.4 4.1 4.4 2.6 2.4 1.6 1.7 1.2 1.4 1.7 4.8 4.0 3.2 2.1 3.0 3.4 2.4 3.5 * 2.5 * 2.2 * 1.1 1.0 1.3 1.0 0.9 1.2 1.1 1.0 0.9 0.6 0.7 0.5 0.7 0.5 0.9 0.9 0.8 0.8 0.6 0.8 0.8 0.9 0.8 2.2 1.6 2.3 1.6 1.4 1.5 1.8 2.2 1.4 1.3 0.7 1.5 1.6 1.2 1.2 1.6 1.1 0.9 1.0 1.1 1.6 * 1.3 * 1.1 0.9 1.3 1.1 0.9 0.8 0.6 0.8 0.7 0.8 1.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.																									
1.1 1.0 1.3 1.0 0.9 1.2 1.1 1.0 0.9 0.6 0.7 0.5 0.7 0.5 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.8 2.2 1.6 2.3 1.6 1.4 1.5 1.8 2.2 1.4 1.3 0.7 0.5 1.6 1.2 1.2 1.6 1.1 0.9 1.0 1.1 * 1.6 * 1.3 * 2.1 1.8 2.9 1.8 1.7 2.1 2.2 2.8 1.8 0.7 0.8 1.1 0.8 1.1 1.0 0.9 1.3 1.1 0.9 0.8 0.6 0.8 0.7 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5																									
2.1 1.8 2.9 1.8 1.7 2.1 2.2 2.8 1.8 0.7 0.8 1.1 0.8 1.1 1.1 0.9 1.3 1.1 0.9 0.8 0.6 0.8 0.7 0.8 1.1 0.5 <0.5																									
0.5 <.0.5 0.5 </td <td>2.2</td> <td>1.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.2</td> <td>1.4</td> <td>1.3</td> <td>0.7</td> <td>1.5</td> <td>1.6</td> <td>1.2</td> <td>1.2</td> <td>1.6</td> <td>1.1</td> <td>0.9</td> <td>1.0</td> <td>1.1</td> <td>*</td> <td>1.6</td> <td></td> <td></td> <td>*</td>	2.2	1.6						2.2	1.4	1.3	0.7	1.5	1.6	1.2	1.2	1.6	1.1	0.9	1.0	1.1	*	1.6			*
3.7 2.9 2.6 2.6 2.0 2.4 2.3 2.1 1.5 2.0 2.5 2.2 1.8 1.3 3.2 2.0 2.4 2.2 1.3 1.5 * 1.6 * 0.9 * 18 18 16 16 11 12 18 13 4.2 4.7 3.8 5.5 3.4 1.4 1.5 1.9 1.9 1.5 1.5 1.4 1.2 1.3 1.1 1.3 1.6 2.3 0.9 0.8 0.7 0.8 0.9 0.6 0.5 0.5 0.9 0.5 0.5 0.5 0.5 0.5 0.5 0.6<																									
18 16 16 11 12 18 13 4.2 4.7 3.8 5.5 3.4 1.4 1.5 1.9 1.9 1.5 1.5 1.4 1.2 1.3 1.1 1.3 1.6 2.3 0.9 0.8 0.7 0.8 0.9 0.6 0.5 0.5 0.9 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6																									
2.3 0.9 0.8 0.7 0.8 0.9 0.6 0.5 0.5 0.9 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.6 <0.6 <0.6 <0.6 <0.6																									
1.1 1.0 1.0 1.1 0.8 0.9 1.1 0.7 0.6 0.6 0.8 0.8 0.7 0.8 0.7 1.3 3.6 0.7 0.8 1.1 1.3 1.2 1.2 1.2 1.4 1.4 1.6 1.7 1.3 1.1 1.4 1.1 1.2 1.4 <td></td> <td>0.8</td> <td>*</td> <td></td>																							0.8	*	
1.5 1.6 1.7 1.2 2.0 2.1 1.9 1.4 1.1 1.3 3.6 -																									
4.3 3.3 2.4 2.4 2.0 2.7 2.4 2.2 2.0 1.8 1.9 2.1 2.1 2.1 1.4 1.6 1.6 1.7 1.3 * 1.1 * 1.1 * 1.4 1.4 1.6 1.6 1.7 1.3 * 1.1 * 1.1 * 1.4 1.4 1.2 1.2 1.4 1.6 1.6 1.5 1.6 1.2 1.3 1.5 1.2 5.6 5.0 4.9 5.1 3.3 3.6 4.8 6.5 3.3 2.6 2.8 3.5 3.6 3.1 3.7 2.7 2.5 2.3 2.6 * 2.1 * 5.7 1.4 1.4 0.7 1.3 0.9 0.8 0.8 0.6 0.7 0.8 0.7 1.1 0.9 0.7 0.8 1.1 1.2 1.4 * 1.4 * 1.0 * 2.9 5.6 3.8 3.5 3.2 3.5 4.3 2.9 3.2 2.2 2.2<																									
3.2 2.8 2.6 2.6 1.7 3.1 3.2 2.3 1.9 1.6 1.4 1.3 1.2 1.2 1.4 1.3 1.2 1.6 1.5 1.6 1.2 1.3 1.5 1.2 5.6 5.0 4.9 5.1 3.3 3.6 4.8 6.5 3.3 2.6 2.8 3.5 3.6 3.1 3.7 2.7 2.5 2.3 2.6 * 2.6 * 2.1 * 5.7 1.4 1.4 0.7 1.3 0.9 0.8 0.8 0.8 0.6 0.7 0.8 0.7 1.1 0.9 0.7 0.8 1.1 1.2 1.4 * 1.4 * 1.0 * 2.9 5.6 3.8 3.5 3.2 3.5 4.3 2.9 3.2 2.2 2.2 2.2 2.7 2.5 2.6 1.6 1.9 2.4 2.2 2.1 * 1.5 * 2.7 * 2.6 12 10 10 10 2.2 2.4 2.4 2.3 1.8 2.3 1.8 1.5 1.4 1.1 1.0 1.5 1.6 1.7 1.																									
5.6 5.0 4.9 5.1 3.3 3.6 4.8 6.5 3.3 2.6 2.8 3.5 3.6 3.1 3.7 2.7 2.5 2.3 2.6 * 2.6 * 2.1 * 5.7 1.4 1.4 0.7 1.3 0.9 0.8 0.8 0.8 0.6 0.7 0.8 0.7 1.1 0.9 0.7 0.8 1.1 1.2 1.4 * 1.4 * 1.0 * 2.9 5.6 3.8 3.5 3.2 3.5 4.3 2.9 3.2 2.2 2.2 2.2 2.7 2.5 2.6 1.6 1.9 2.4 2.2 2.1 * 1.5 * 2.7 * 2.6 12 10 10 10 2.2 2.4 2.4 2.3 1.8 2.3 1.8 1.5 1.4 1.1 1.0 1.5 1.5 1.6 1.7 1.4 1.4 1.5 1.3 1.6 1.5																									
5.6 3.8 3.5 3.2 3.5 4.3 2.9 3.2 2.2 2.2 2.2 2.7 2.5 2.6 1.6 1.9 2.4 2.2 2.1 * 1.5 * 2.7 * 2.6 12 10 10 10 2.2 2.4 2.4 2.3 1.8 2.3 1.8 1.5 1.4 1.1 1.0 1.5 1.5 1.6 1.7 1.4 1.4 1.5 1.3 1.6 1.5		5.0				3.6							3.6	3.1					2.6				2.1		5.7
12 10 10 10 22 2.4 2.4 2.3 1.8 2.3 1.8 1.5 1.4 1.1 1.0 1.5 1.5 1.6 1.7 1.4 1.4 1.5 1.3 1.6 1.5																									
32 23 23 21 1.6 1.7 21 1.8 1.6 1.5 1.6 1.3 11 12 0.9 1.3 1.2 1.3 1.4 1.7 1.4 * 1.6 * 1.4	3.2	2.3	2.3	2.1	1.6	1.7	2.4	1.8	1.6	1.5	1.6	1.3	1.4	1.1	0.9	1.3	1.5	1.6	1.4	1.7	1.4	1.5 *	1.6	1.b *	1.5

H1	H2	Н3	H4	Н5	Н6	Н7	Н8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	H24	H25
2.0	1.6	1.7	1.6	1.4	1.8	1.9	1.8	1.3	1.3	1.4	1.2	1.1	0.9	1.0	1.2	1.2	1.3	1.3	1.4	1.1	1.4	1.0	1.2	1.5
2.2	2.0	1.9	1.6	1.8	1.5	2.0	1.8	1.6	1.4	1.5	1.4	1.3	1.4	1.2	1.4	1.4	1.5	1.4	1.2	1.4	2.0	1.5	1.9	1.8
1.2	1.1	1.6	1.1	1.0	1.3	1.3	1.4	1.1	0.6	0.7	0.7	0.7	0.8	0.7	0.9	1.0	8.0	0.8	0.7	0.7	8.0	0.7	8.0	0.9
11	10	9.5	9.5	5.0	5.8	7.9	5.9	2.6	2.9	2.3	2.8	2.0	1.2	1.2	1.6	1.6	1.5	1.6	1.4	1.4	1.4	1.2	1.5	1.4

(2) 湖沼

① COD75%水質値及び年平均値

ア. 千苅水源池 (mg/L)

	- 1 / 4/4		. (,,													
	年度	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63	H1	H2	Н3	H4
全層	75%水質値	2.8	2.9	2.8	2.6	2.4	2.5	2.8	2.7	2.9	2.4	3.3	2.8	2.1	2.8	2.9	2.7
土眉	年平均値	2.6	2.7	2.8	2.3	2.2	2.3	2.4	2.6	2.4	2.4	2.9	2.6	2.2	2.6	2.5	2.6
表層	年平均值	2.9	3.0	3.2	2.7	2.6	2.7	2.7	2.9	2.7	2.8	3.3	2.9	2.4	2.7	2.9	2.9
下層	年平均値	2.3	2.3	2.4	1.8	1.8	1.9	2.0	2.2	2.0	2.0	2.6	2.3	2.0	2.3	2.0	2.3

(環境基準適合率(千苅水源池·COD·全層))

年度	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63	H1	H2	Н3	H4
環境基準適合率(%)	83	75	75	92	92	92	83	83	92	92	67	92	92	83	83	75
達成日数/測定日数	10/12	9/12	9/12	11/12	11/12	11/12	10/12	10/12	11/12	11/12	8/12	11/12	11/12	10/12	10/12	9/12

イ. 衝原湖 (mg/L)

	· 12/1/11/19	/111/	, 1														
	年度	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63	H1	H2	Н3	H4
全層	75%水質値	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
土眉	年平均値	_	_	_	_	_	_	_	_		_	_	l	_	_	_	_
表層	年平均值	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
下層	年平均值	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

② 全窒素・全燐の年平均値

ア. 千苅水源池 (mg/L)

	年度	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63	H1	H2	Н3	H4
全窒	表層	0.5	0.4	0.5	0.6	0.5	0.7	0.5	0.5	0.55	0.51	0.49	0.46	0.50	0.53	0.48	0.48
素	下層	0.7	0.5	0.7	0.6	0.6	0.7	0.6	0.6	0.61	0.62	0.59	0.56	0.54	0.61	0.57	0.62
全	表層	<0.01	<0.01	<0.01	0.02	0.02	0.02	0.02	0.01	0.021	0.019	0.016	0.023	0.022	0.027	0.019	0.012
燐	下層	<0.01	<0.01	0.02	0.03	0.02	0.02	0.03	0.02	0.021	0.016	0.018	0.026	0.022	0.030	0.015	0.014

イ. 衝原湖 (mg/L)

		, ,	,, ,														
	年度	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63	H1	H2	Н3	H4
全 窒	表層	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
素	下層	_	_	_	_	_	_	_	_		_	_	l	_	_	_	_
全	表層	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
燐	下層	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

H5	Н6	H7	Н8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	H24	H25
2.7	2.9	3.5	2.9	2.9	3.0	3.3	3.5	3.5	3.0	3.0	3.2	2.8	2.8	3.6	4.0	3.3	3.6	3.9	3.5	3.6
2.6	2.4	3.0	2.7	2.8	2.8	3.0	3.3	2.7	2.8	2.8	2.9	2.3	2.6	3.1	3.6	3.2	3.3	3.2	3.2	3.1
3.0	2.9	3.3	3.1	3.2	3.5	3.2	3.7	3.1	2.9	3.1	3.3	2.2	2.8	3.7	4.3	3.6	3.8	3.7	3.5	3.3
2.2	1.8	2.7	2.3	2.3	2.0	2.7	2.8	2.4	2.7	2.4	2.5	2.3	2.5	2.6	2.8	2.8	2.9	2.7	2.8	2.9

H5	H6	H7	H8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	H24	H25
83	91	42	83	75	75	58	50	42	75	75	67	83	83	58	58	58	50	58	58	58
10/12	11/12	5/12	10/12	9/12	9/12	7/12	6/12	5/12	9/12	9/12	8/12	10/12	10/12	7/12	7/12	7/12	6/12	7/12	7/12	7/12

Н5	Н6	H7	H8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	H24	H25
4.2	4.7	4.2	4.4	3.6	4.2	3.9	3.8	4.3	4.2	5.1	4.6	3.8	4.7	4.0	4.5	4.4	4.7	5.1	3.5	4.5
4.0	4.3	4.0	3.8	4.0	4.0	3.8	3.8	3.8	4.4	5.5	4.3	3.9	4.6	4.2	4.3	4.5	5.0	4.6	3.6	13
4.1	4.5	4.1	4.1	4.4	4.1	3.9	3.9	4.1	4.6	7.0	4.6	4.0	5.0	4.4	4.6	4.5	5.2	5.0	3.9	22
3.8	4.1	3.9	3.6	3.5	3.9	3.6	3.6	3.5	3.8	3.9	4.1	3.8	4.3	3.9	4.0	4.5	4.7	4.2	3.3	4.3

※H25年度は夏季にアオコ発生

H5	Н6	H7	H8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	H24	H25
0.44	0.60	0.65	0.62	0.51	0.67	0.52	0.66	0.59	0.46	0.59	0.60	0.47	0.58	0.50	0.67	0.45	0.51	0.62	0.42	0.50
0.50	0.75	0.74	0.66	0.59	0.61	0.62	0.71	0.73	0.59	0.58	0.64	0.62	0.67	0.61	0.65	0.60	0.61	0.67	0.56	0.60
0.021	0.017	0.030	0.027	0.021	0.032	0.017	0.025	0.016	0.016	0.027	0.040	0.017	0.026	0.019	0.026	0.023	0.030	0.034	0.023	0.023
0.020	0.017	0.035	0.022	0.021	0.020	0.027	0.028	0.021	0.027	0.025	0.033	0.022	0.025	0.019	0.038	0.025	0.037	0.035	0.029	0.031

H5	H6	H7	H8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	H24	H25
0.73	1.1	1.1	0.96	0.77	0.89	0.79	0.80	0.75	0.85	0.82	0.86	0.86	0.92	0.57	0.83	0.87	0.69	1.0	0.79	4.3
0.73	1.1	1.1	0.92	0.72	0.88	0.74	0.73	0.76	0.79	0.72	0.81	0.74	0.83	0.57	0.78	0.91	0.60	1.0	0.76	0.74
0.024	0.025	0.034	0.030	0.032	0.026	0.028	0.024	0.032	0.048	0.053	0.031	0.029	0.031	0.023	0.027	0.033	0.049	0.042	0.028	0.31
0.024	0.025	0.034	0.030	0.021	0.026	0.027	0.024	0.031	0.027	0.025	0.032	0.025	0.033	0.023	0.029	0.035	0.039	0.033	0.019	0.021

(3) 海域

① COD75%水質値(mg/L)

No.	海域名	地点名	類型	S46	S47	S48	S49	S50	S51	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63
53	第4工区東	深江フェリー埠頭		_	-	_	-	4.3	3.8	5.6	5.8	6.5	5.2	6.3	6.0	7.4	6.6	5.8	4.8	9.4	6.9
55	六甲アイランド東	フェリー埠頭		-	-	_	1	1	-	-	-	-	4.9	5.3	5.4	4.9	4.8	3.7	3.9	6.8	4.8
56	第2工区南	六甲大橋		-	-	-	-	3.6	4.1	4.7	4.6	5.6	4.8	5.7	5.7	4.9	6.1	3.9	4.7	9.0	5.1
58	摩耶埠頭	第四突堤南		-	1.5	1.4	2.9	3.9	4.1	3.3	4.1	3.4	5.8	5.2	5.5	4.3	4.5	3.3	5.0	7.2	4.9
59	葺合港	摩耶大橋		1.7	1.8	1.2	1.7	2.4	3.8	2.6	2.8	3.6	4.3	2.9	4.2	3.7	4.2	3.9	4.4	6.9	4.5
60	ポートアイランド東	中埠頭東		ı	2.1	1.4	3.6	2.3	3.6	3.4	4.1	3.4	4.1	4.4	5.5	4.1	5.8	3.7	4.0	7.1	4.1
61	神戸港東	神戸大橋		1.5	2.1	1.4	2.2	3.6	3.5	3.1	3.2	3.5	3.6	3.7	4.9	3.8	4.3	3.8	4.1	5.8	5.2
63	神戸港西	兵庫第二突堤南	С	ı	0.5	1.0	2.0	3.0	3.3	3.5	3.0	2.7	3.7	3.5	2.8	3.3	3.9	3.7	4.1	4.9	3.7
64	兵庫運河	材木橋	類	3.9	3.4	2.4	2.9	3.9	3.7	4.2	4.2	4.3	4.3	4.3	4.6	5.0	5.3	5.8	5.4	6.3	4.9
	六甲アイランド南	沖合(3)	型	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	_
	第4工区南	沖合(1)		-	-	_	-	-	_	_	_	-	_	-	-	-	_	6.0	5.3	8.5	6.1
	ポートアイランド東			-	-	_	-	-	_	_	_	-	_	-	-	-	_	-	_	_	_
	神戸港	中 央		-	-	_	-	-	_	_	_	-	_	-	3.9	3.4	4.9	4.6	4.6	5.7	4.0
	東部運河東	東魚崎橋		-	-	3.7	5.5	5.7	5.2	6.7	7.9	6.4	7.2	6.9	7.0	8.7	8.0	9.4	8.9	8.0	7.1
		住吉川河口南		-	-	_	-	4.2	4.1	5.7	8.2	5.7	6.4	7.2	6.4	6.4	7.4	5.6	5.6	9.1	6.8
	東神戸水路	東部市場西		2.0	2.3	2.0	3.5	3.4	4.1	4.4	5.4	5.7	4.2	7.0	5.8	5.3	5.1	4.5	5.1	10	6.8
	東部運河西	石屋川河口南		-	-	2.6	4.1	3.2	4.6	5.2	3.9	3.4	4.1	4.1	4.6	3.6	7.6	4.7	4.8	5.5	4.1
	ポートアイランド南	沖合(1)		-	-	_	-	-	-	-	-	-	-	-	-	-	-	4.4	4.5	4.9	4.8
		沖合(1)		-	-	-	-	-	-	-	-	-	_	-	-	4.1	4.3	4.8	4.5	6.6	5.7
	第1防波堤南	沖合		-	-	_	-	-	-	-	-	-	-	-	-	3.1	4.1	4.4	4.3	6.5	4.6
	苅藻南	神戸灯台南	В	-	1.4	1.2	2.8	2.6	2.6	2.6	2.1	2.8	3.1	3.3	3.2	2.6	4.3	3.4	3.6	5.4	3.8
	苅藻島南	沖合	類	-	-	_	-	-	_	_	_	-	_	-	-	2.8	4.2	4.1	3.4	4.9	3.8
	長田港	港口	型	1.4	1.6	1.6	2.0	3.3	3.6	2.9	2.4	2.1	2.7	2.6	2.8	2.4	3.9	2.8	3.1	4.2	3.3
	第4工区南	沖合(2)		-	-	-	-	-	-	-	-	-	_	-	-	-	-	3.6	4.8	7.6	5.0
		観測塔		-	-	_	-	-	_	_	_	-	_	-	-	-	_	-	_	5.7	4.3
	六甲アイランド南	沖合(2)		-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	_
	苅藻運河	苅藻橋			4.6	2.7	3.6	4.6	4.4	4.7	4.0	3.1	4.0	4.0	4.6	5.0	5.3	4.0	4.8	4.9	3.7
	須磨港	西防波堤		-	-	1.0	3.0	1.7	2.2	2.5	2.2	2.1	2.5	1.7	2.9	3.0	3.6	2.4	3.2	3.6	3.0
	須磨海域	JR須磨駅南		_	0.6	0.5	4.1	2.5	2.9	2.3	1.6	2.3	3.2	1.7	3.6	3.0	3.6	2.5	3.2	3.4	2.7
	須磨海域	海釣公園		-	-	_	-	-	-	-	1.9	2.0	2.9	1.8	3.1	3.4	4.8	2.9	3.1	4.1	3.0
	塩屋海域	塩屋漁港	Α	-	0.3	0.4	2.7	1.6	2.5	1.8	1.8	1.3	3.0	1.2	2.6	2.4	3.1	2.4	2.4	3.3	2.8
	垂水海域	垂水漁港	類型	-	-	0.3	1.8	1.5	1.8	1.4	1.6	1.5	2.3	1.4	2.3	2.4	2.3	2.3	2.9	3.0	2.9
	舞子海域	舞子漁港	坐	_	-	_	-	_	-	-	1.6	1.3	1.9	1.3	2.6	2.6	1.8	2.7	2.2	2.4	2.8
	ポートアイランド南	沖合(3)		-	-	_	-	-	-	-	_	-	-	-	-	_	_	_	_	_	-
	垂水海域	沖合		_	-	_	-	_	-	-	-	-	_	-	-	-	_	-	_	_	
補18	垂水海域	平磯海釣公園		_	- -	_	_	-	_	- 7手41 -	_	-	— —	_	_	-	-	1.8	2.9	3.5	2.9

注1) No.65 六甲アイランド・沖合(3)は、平成7年度よりB類型水域からC類型水域に地点を移動している。この際、地点名を六甲アイランド・沖合(1)から変更している。

【COD】75%水質値の類型別平均値(mg/L) ※平均値には、補助地点は含まない。

水域	S46	S47	S48	S49	S50	S51	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63
A類型	_	0.5	0.6	2.9	1.8	2.4	2.0	1.8	1.8	2.6	1.5	2.9	2.8	3.2	2.5	2.8	3.3	2.9
B類型	1.4	1.5	1.4	2.4	3.0	3.1	2.8	2.3	2.5	2.9	3.0	3.0	3.0	4.2	3.9	4.0	5.7	4.4
C類型	2.4	1.9	1.5	2.6	3.4	3.7	3.8	4.0	4.1	4.5	4.6	4.9	4.5	5.0	4.4	4.6	7.1	4.9

注2) No.82 ポートアイランド南・沖合(3)は平成7年度よりA類型水域内で地点を移動している。この際、地点名をポートアイランド南・沖合(2) から変更している。

H1	H2	НЗ	H4	H5	Н6	H7	Н8	Н9	H10	H11	⊔ 12	⊔ 12	⊔1 <i>1</i>	⊔ 15	H16	⊔ 17	H18	⊔ 10	⊔2∩	H21	Laa	H23	H24	H25
3.7	5.5	4.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1123	1124	-
4.6	5.0	3.8	_	_	_	_	_	_	_	_	_	_	_	_		_		_		_	_			_
4.4	4.5	4.3	5.3	5.5	5.8	5.8	5.1	5.4	4.6	4.5	5.4	5.7	6.2	7.7	5.2	5.5	6.4	5.4	5.7	4.4	5.6	5.0	3.6	5.8
4.7	4.7	4.0	-	-	-	-	-	-	-	4.5	J. 4	J. /	0.2	-	J.Z _	-	-	-	J. /	-	J.0 _	5.0	J.0 _	J.0 –
3.0	4.7	3.8	4.1	5.2	5.4	4.7	4.0	3.8	4.4	3.7	5.9	5.0	5.1	6.0	4.5	4.7	5.5	4.6	4.2	4.0	4.6	4.2	3.8	4.3
4.1	4.1	4.2	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4.1	5.1	3.5	3.9	4.7	3.4	4.2	3.7	3.3	4.2	4.0	5.4	4.3	5.7	6.5	4.0	4.5	5.1	5.1	4.8	3.9	4.4	3.9	4.7	4.4
3.9	3.9	4.4	-	-	-	-	_	-	-	_	_	-	_	_	_	_	_	_	-	_	_	_	_	_
4.6	5.5	5.5	4.9	5.1	4.0	4.6	5.0	4.8	4.6	4.8	4.2	4.6	4.4	5.6	4.5	4.3	4.4	4.1	5.0	4.4	5.6	3.4	3.8	3.5
-	_	_	_	-	_	5.2	5.8	4.2	4.4	4.8	4.9	6.5	5.6	7.1	5.5	5.6	4.6	5.3	6.1	3.9	5.5	5.0	4.5	5.5
5.5	5.6	4.0	4.3	4.6	5.7	5.7	6.9	5.6	5.3	4.4	5.5	6.1	6.3	8.2	5.3	6.0	5.6	5.7	5.8	4.7	4.9	5.4	4.9	6.4
_	_	-	3.9	5.8	5.0	4.8	5.1	4.7	4.2	3.9	5.1	4.9	5.5	6.2	5.2	4.8	5.4	5.5	4.7	3.5	4.7	4.8	4.0	4.9
4.6	4.0	3.5	3.0	4.8	3.9	3.7	3.9	3.7	4.0	3.4	5.2	4.2	5.6	6.3	3.9	4.3	5.0	5.0	4.7	4.0	4.7	4.3	3.8	4.1
6.4	5.9	5.8	3.6	4.5	8.2	5.9	4.7	4.8	5.0	3.5	ı	ı	1	ı	_	1	ı	ı	ı	-	-	-	ı	_
6.8	6.6	6.6	-	-	ı	ı	-	-	-	-	ı	-	ı	ı	_	ı	ı	-	Ī	-	-	-	ı	_
4.4	5.4	4.2	3.9	3.5	6.7	6.3	7.6	-	-	-	-	-	-	-	_	-	-	-	-	_	_	_	-	-
3.2	4.4	6.0	3.8	2.6	4.0	3.7	3.4	_	-	_	_	-	_	_	_	_	_	_	-	_	_	_	_	-
4.2	4.8	4.0	3.5	4.5	4.2	4.4	4.1	3.6	4.0	3.8	4.6	4.8	5.0	6.9	4.8	4.6	4.9	4.8	4.3	3.8	4.4	5.2	3.7	4.7
4.5	5.1	4.3	4.2	5.0	5.2	-	-	-	-	-	_	-	_	_	_	_	_	-	-	_	_	_	_	-
4.2	4.7	3.8	3.7	4.8	2.9	4.3	3.6	3.2	4.5	3.8	4.7	3.9	5.2	6.0	3.9	3.9	4.9	4.7	4.2	3.3	4.0	4.3	4.2	4.2
3.7	4.7	3.7	3.2	5.0	2.8	3.7	3.2	3.4	4.0	3.6	4.3	3.5	4.1	6.1	3.2	3.6	4.0	3.6	4.3	3.1	3.6	3.6	3.6	4.0
3.5	4.3	3.6	3.4	4.3	3.2	3.6	3.7	3.1	4.0	3.4	4.5	3.6	4.3	6.1	3.3	3.9	4.6	4.2	4.4	4.0	3.2	4.0	3.4	3.9
3.5	3.9	3.6	3.5	2.3	2.6	-	_	-	-	-	_	-	_	_	_	_	_	-	_	_	_	_	_	_
4.8	5.4	3.9	3.7	3.9	5.5	5.5	6.0	4.3	4.4	4.4	6.2	5.9	5.8	6.6	4.8	5.6	4.8	4.9	5.5	4.1	4.9	5.4	4.7	5.3
3.7	5.0	3.7	3.9	3.6	3.6	4.4	5.1	3.8	4.2	4.0	5.3	5.0	5.1	7.0	4.3	4.8	4.9	5.1	5.4	3.8	5.0	5.8	4.6	5.7
	_	_	3.8	4.4	4.4	4.3	5.5	4.0	4.0	3.6	4.1	5.1	5.4	6.8	4.4	4.2	4.3	4.9	4.7	3.6	4.1	5.3	3.8	5.0
4.7	4.3	3.6	-	-	-	_	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2.9	3.6	4.1	3.2	4.4	3.0	3.0	3.0	2.6	3.6	3.2	4.7	3.0	3.9	4.8	3.0	3.5	3.9	4.0	3.5	3.3	2.7	3.4	3.3	3.5
3.2	3.8	2.9	2.5	3.4	2.0	2.6	3.2	2.7	3.5	3.4	4.0	3.0	3.9	4.1	2.6	3.3	3.6	3.6	3.2	2.9	2.6	3.1	3.9	3.2
3.3	3.8	3.6	3.0	5.2	2.5	2.6	2.8	2.7	3.7	3.4	4.2	2.8	3.5	4.8	2.8	3.3	3.4	3.4	3.9	2.9	3.1	3.3	2.9	3.4
3.6	2.7	3.3	- 0.1	2.1	-	- 0.1	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
3.0	2.9	2.8	2.1	3.1	2.3	2.1	2.3	3.0	3.2	3.0	2.9	2.5	2.6	3.8	2.2	2.5	2.9	2.5	3.5	2.1	2.2	2.4	1.9	2.4
2.4	2.9	2.3	1.7	1.8	1.7	1.7	2.0	2.6	2.8	2.8	2.2	2.0	2.4	2.7	2.0	2.3	2.6	2.2	1.8	1.9	2.1	1.9	1.8	2.1
F-	_	_	3.4	4.7	3.4	5.0	3.8	3.1	3.6	3.5	3.7	3.2	4.8	5.4	3.7	3.9	4.0	4.3	4.2	3.2	3.8	4.5	3.1	3.9
2 1		2.6	1.8	3.0	2.0	1.9	2.3	3.2	2.8	3.2	2.1	2.7	2.6	3.3	2.1	2.7	2.5	2.2	2.1	2.6	2.5	3.3	2.2	1.9
3.1	3.1	2.0	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	

Н1	H2	Н3	Н4	Н5	Н6	H7	Н8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	H24	H25
3.1	3.3	3.2	2.5	3.7	2.4	2.7	2.8	2.8	3.3	3.2	3.4	2.7	3.4	4.1	2.6	3.1	3.3	3.2	3.2	2.7	2.7	3.1	2.7	2.9
4.0	4.7	3.8	3.7	4.2	3.8	4.3	4.5	3.6	4.2	3.8	4.8	4.5	5.0	6.5	4.1	4.4	4.6	4.6	4.7	3.7	4.2	4.8	4.0	4.7
4.3	4.8	4.1	4.2	5.1	4.7	4.8	4.9	4.4	4.5	4.2	5.2	5.2	5.6	6.7	4.8	5.0	5.3	5.1	5.1	4.1	5.0	4.5	4.1	4.9

② COD年平均値(mg/L)

No.	海域名	地点名	類型	S46	S47	S48	S49	S50	S51	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63
53	第4工区東	深江フェリー埠頭		-	_	-	-	3.5	3.0	4.1	4.5	5.6	5.3	5.3	5.6	6.9	4.8	4.3	4.3	8.5	5.8
55	六甲アイランド東	フェリー埠頭		-	_	-	-	_	_	-	-	-	5.3	3.6	4.1	4.7	3.1	3.2	3.6	4.8	4.0
	第2工区南	六甲大橋		-	-	-	-	2.9	3.1	4.0	4.3	4.2	5.1	4.5	4.7	4.5	4.6	3.3	4.1	6.6	4.8
58	摩耶埠頭	第四突堤南		-	3.0	1.1	2.1	2.7	3.0	2.9	3.3	3.0	4.5	3.7	4.5	3.6	3.5	3.1	4.0	5.2	4.1
59	葺合港	摩耶大橋		1.2	1.3	1.1	1.5	2.3	2.5	2.1	2.7	3.1	5.1	3.5	3.3	2.9	3.1	3.2	4.2	5.2	3.5
60	ポートアイランド東	中埠頭東		-	2.1	1.1	3.0	1.9	2.6	2.8	2.9	3.1	3.9	3.3	4.3	3.5	4.2	3.4	3.9	5.0	3.6
61	神戸港東	神戸大橋		1.2	1.4	1.0	1.8	2.4	2.5	2.4	2.8	3.0	3.5	3.6	4.1	3.1	3.3	3.5	3.8	5.2	4.4
63	神戸港西	兵庫第二突堤南	С	-	8.0	8.0	1.5	2.4	2.8	2.8	2.4	3.2	4.7	2.9	2.5	2.6	3.6	3.4	3.4	4.2	3.3
64	兵庫運河	材木橋	類	3.2	2.7	2.0	2.6	3.2	3.2	3.9	3.7	3.4	3.8	3.9	4.2	4.7	4.6	4.5	4.5	5.5	4.7
65	六甲アイランド南	沖合(3)	型	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-
76	第4工区南	沖合(1)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	4.1	5.1	6.1	4.7
79	ポートアイランド東	第6防波堤北		-	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-
	神戸港	中央		_	ı	-	-	1	ı	_	_	_	-	_	3.4	3.0	3.5	3.6	4.0	4.5	4.1
	東部運河東	東魚崎橋		-	_	15	5.6	4.9	5.4	5.9	7.3	5.3	6.3	5.9	6.5	8.8	7.4	7.7	8.1	6.3	6.6
補12	六甲水路	住吉川河口南		-	ı	-	1	3.5	3.3	4.7	5.7	5.4	7.2	5.8	6.8	5.4	5.8	4.5	5.1	7.3	6.4
	東神戸水路	東部市場西		1.6	2.5	1.4	3.3	3.0	3.0	3.2	4.1	4.4	4.8	5.9	7.4	5.5	4.3	4.2	4.9	7.8	5.2
	東部運河西	石屋川河口南		_	_	2.9	3.2	2.6	2.9	3.5	3.2	2.7	5.0	5.0	3.7	3.4	5.2	4.3	4.6	5.1	3.8
	ポートアイランド南			-	-	-	-	-	-	-	-	-	-	-	-	_	_	4.0	4.0	4.4	3.5
		沖合(1)		-	-	-	-	-	-	-	-	-	-	-	-	3.5	3.2	4.1	4.2	4.8	4.1
	第1防波堤南	沖合		-	-	-	-	-	-	-	-	-	-	-	-	2.6	3.2	3.2	3.3	4.6	3.6
	苅藻南	神戸灯台南		-	1.1	1.1	2.5	1.9	2.5	2.3	1.9	2.2	3.8	3.7	3.2	2.2	3.2	3.1	3.4	4.3	3.0
	苅藻島南	沖合	B 類	-	-	-	-	-	-	-	-	-	-	-	-	2.3	2.8	3.4	3.3	3.9	2.9
	長田港	港口	型	0.9	1.2	1.3	1.7	2.9	2.5	2.2	2.0	2.3	3.0	2.5	2.4	2.3	2.5	2.5	2.8	3.7	2.8
	第4工区南	沖合(2)		-	-	-	-	-	_	-	-	-	-	-	_	_	-	3.7	4.4	5.1	4.0
		観測塔		-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	4.9	4.1
	六甲アイランド南	沖合(2)		-	-	-	-	-	_	-	-	-	-	-	_	_	-	-	-	-	-
	苅藻運河	苅藻橋		-	5.0	2.9	3.3	3.7	3.5	3.9	3.3	2.6	4.3	4.0	4.2	4.4	3.9	3.4	3.9	4.2	3.3
70	須磨港	西防波堤		-	-	8.0	2.4	1.6	2.2	1.6	1.8	2.0	2.7	1.8	2.3	2.2	2.3	2.4	2.7	3.5	2.8
	須磨海域	JR須磨駅南		-	8.0	0.7	3.0	2.1	2.3	1.6	1.5	2.6	3.2	1.8	2.9	2.2	2.4	2.4	2.8	3.3	2.6
	須磨海域	海釣公園		-	-	-	-	-	-	-	1.6	2.6	2.6	2.1	2.3	2.8	2.9	2.6	2.6	3.6	2.6
	塩屋海域	塩屋漁港	Α	-	0.5	0.4	2.1	1.3	2.2	1.5	1.7	2.1	1.9	1.4	2.1	1.8	2.1	2.1	2.2	2.9	2.5
	垂水海域	垂水漁港	類	-	_	0.3	1.6	1.2	1.8	1.3	1.4	1.4	1.6	1.3	2.0	1.7	1.6	1.9	2.3	3.0	2.4
	舞子海域	舞子漁港	型	-	-	-	-	-	-	-	1.5	1.1	1.3	1.2	2.3	2.0	1.3	2.2	1.9	2.3	2.4
_	ポートアイランド南			-	_	_	-	-	-	_	_	_	-	-	-	_	_	-	_	_	-
	垂水海域	沖合		-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-
補18	垂水海域	平磯海釣公園		-	_	-	-	-	_	-	-	-	-	-	_	_	_	1.8	2.4	3.4	2.3

注1) No.65 六甲アイランド・沖合(3)は、平成7年度よりB類型水域からC類型水域に地点を移動している。この際、地点名を六甲アイランド・沖合(1)から変更している。

【COD】年平均値の類型別平均値(mg/L) ※平均値には、補助地点は含まない。

水域	S46	S47	S48	S49	S50	S51	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63
A類型	-	0.7	0.6	2.3	1.6	2.1	1.5	1.6	2.0	2.2	1.6	2.3	2.1	2.1	2.3	2.4	3.1	2.6
B類型	0.9	1.2	1.2	2.1	2.4	2.5	2.3	2.0	2.3	3.4	3.1	2.8	2.6	3.0	3.4	3.6	4.5	3.5
C類型	1.9	1.9	1.2	2.1	2.7	2.8	3.1	3.3	3.6	4.6	3.8	4.1	4.0	3.8	3.6	4.1	5.5	4.3

注2) No.82 ポートアイランド南・沖合(3)は平成7年度よりA類型水域内で地点を移動している。この際、地点名をポートアイランド南・沖合(2)から変更している。

H1	H2	НЗ	H4	Н5	Н6	H7	Н8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	H24	H25
3.7	4.7	3.8	-	-	-	-	-	-	-	_	_	_	_	-	_	_	-	-	-	_	_	-	_	-
3.6	4.5	3.7	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3.6	4.0	3.8	3.6	4.4	5.4	4.5	4.6	4.1	4.0	4.0	4.4	4.7	5.1	6.3	4.8	5.0	4.7	4.6	5.0	3.8	5.1	3.9	3.4	4.7
3.7	4.4	3.6	-	_	_	-	-	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.9	3.8	3.4	3.3	3.6	4.4	3.7	3.7	3.3	3.6	3.4	4.1	3.7	4.1	5.1	4.0	4.4	4.5	4.1	4.0	3.0	3.9	3.5	3.3	4.1
3.4	3.9	3.4	-	-	-	_	-	-	-	-	_	-	_	_	_	_	_	_	_	_	_	_	-	_
3.5	3.8	3.2	2.8	3.1	3.2	3.2	3.6	3.1	3.7	3.7	4.1	3.8	4.4	5.3	3.8	4.2	4.2	4.1	4.0	3.7	4.0	3.3	3.8	4.1
3.0	3.5	3.4	1	1	-	-	-	-	1	1	-	-	-	1	1	1	1	1	1	-	-	1	1	-
4.2	5.1	4.5	4.3	4.4	4.2	4.0	4.7	4.3	4.0	4.8	4.5	4.9	4.4	4.9	4.2	4.3	4.3	4.2	4.0	4.1	4.8	3.0	3.4	3.2
-	_	-	_	-	-	4.1	5.0	4.1	4.1	4.2	4.3	4.8	4.8	5.8	4.7	4.9	4.3	4.5	4.6	3.5	4.6	4.1	3.8	4.5
4.6	4.8	3.6	3.3	4.1	5.0	4.4	5.2	4.5	4.7	4.6	4.4	5.1	5.3	6.2	4.9	5.6	4.6	4.7	4.7	3.8	4.6	4.4	4.1	5.1
-	1	ı	3.0	3.8	4.3	3.7	4.4	4.1	3.9	3.7	4.1	4.0	4.4	5.3	4.7	4.4	4.5	4.3	4.2	3.2	4.2	3.6	3.4	4.2
4.2	3.5	3.1	2.6	3.4	3.5	3.1	3.5	3.4	3.7	3.2	4.0	3.6	4.5	5.1	3.4	4.0	4.1	3.9	3.7	3.7	4.0	3.6	3.8	4.1
4.4	4.8	3.9	3.3	3.8	6.1	4.6	4.3	5.0	4.7	3.7	-	-	_	-	-	-	-	_	_	-	_	-	-	-
4.9	5.3	5.5	_	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
3.6	4.4	3.9	3.7	3.5	5.5	4.9	5.4	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
3.2	4.2	4.1	3.0	3.5	4.0	4.0	3.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3.3	3.7	3.4	3.1	3.5	3.6	3.3	3.6	3.4	3.5	3.4	3.8	3.8	4.2	5.6	4.1	4.1	4.1	3.9	4.0	3.1	3.7	3.8	3.6	3.9
4.0	4.6	3.2	3.4	3.9	4.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3.7	3.8	3.3	3.0	3.4	3.0	3.3	3.4	3.4	3.8	3.6	3.6	3.4	4.1	4.9	3.5	3.8	4.0	3.7	3.6	2.8	3.3	3.5	3.4	3.5
3.2	3.4	3.0	2.5	3.5	2.6	3.0	2.9	3.1	3.4	3.2	3.5	3.3	3.6	4.7	2.9	3.4	3.4	3.4	3.5	3.0	3.1	3.3	3.4	3.6
3.2	3.4	3.2	2.5	3.2	2.8	3.0	3.4	2.8	3.4	3.1	3.4	3.4	3.7	4.6	3.0	3.6	3.5	3.4	3.4	3.0	3.2	3.1	3.4	3.5
3.1	3.2	2.9	3.0	2.9	2.7	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4.1	4.4	3.7	3.1	3.6	4.5	4.0	5.2	3.8	4.1	3.9	4.5	4.7	4.7	5.4	4.6	4.9	4.3	4.2	4.5	3.7	4.4	4.1	3.9	4.4
3.7	4.2	3.1	3.2	3.3	3.5	3.6	4.1	3.6	3.6	3.4	4.1	4.3	4.4	5.5	4.0	4.3	4.1	4.0	4.2	3.3	4.4	3.9	3.8	4.4
-	-	-	3.1	3.3	3.5	3.5	3.9	3.5	3.6	3.4	3.8	4.0	4.4	5.4	4.0	4.0	3.8	3.8	3.9	3.3	3.7	3.9	3.4	4.2
3.6	4.0	3.3	_ 	-	-	_ 0.F	-	-	- 0.1	-	-	-	-	-	-	-	-	-	-	_	-	_	-	-
2.8	2.9	2.7	2.5	2.9	2.6	2.5	2.8	2.6	3.1	3.1	3.5	2.8	3.4	4.0	2.6	3.3	3.1	3.4	3.1	2.7	2.6	2.7	3.0	2.9
2.7	2.8	2.7	2.2	2.7	2.1	2.3	2.5	2.7	3.0	3.0	3.2	2.9	3.2	3.8	2.2	3.1	3.0	3.1	2.8	2.5	2.7	2.5	3.0	2.8
3.1	3.1	2.7	2.5	3.3	2.4	2.5	2.6	2.4	3.0	3.1	3.3	2.8	3.1	3.8	2.4	3.0	3.0	2.8	2.9	2.5	2.7	2.6	3.0	2.7
3.0	2.8	2.5		2 1	2.2	2 1		2.9	2.0	- 0.7	- 0.4	- 0.4	- 0.4	-						1.0	-	- 0.1	1.0	- 0.1
2.0	2.7	2.5 1.9	2.1 1.5	3.1 1.7	1.7	1.7	1.8	2.5	3.0 2.6	2.7	2.4	2.4	2.4	3.0	2.1	2.4	2.7	2.4	2.7	1.9	2.0	2.1	1.9	2.1
Z.1 _	2.5	-	3.0	3.7	2.9		3.5			2.7	2.0	1.8	2.2	2.5	1.9	2.2	2.3	2.1	1.7	1.8	1.9	1.9	1.7	1.9
_	_	=	1.6	2.3	1.9	3.4 1.9	2.2	3.3 2.9	3.4 2.7	3.2	3.4	3.5	3.9	4.6	3.3	3.6	3.8	3.4	3.3	2.9	3.3	3.5	3.0	3.3
2.4	2.5	2.2	-		1.9	1.9			Z. /	2.9	2.1	2.2	2.5	3.0	2.1	2.4	2.4	2.3	2.1	2.1	2.3	2.6	2.2	2.1
۷.4	۷.۵	۷.۷								_				_	_	_	_	_	_			_	_	لنب

H1	H2	Н3	H4	H5	Н6	H7	Н8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	H24	H25
2.8	2.8	2.5	2.2	2.8	2.3	2.3	2.5	2.8	3.0	3.0	2.8	2.6	3.0	3.5	2.4	2.9	2.9	2.8	2.7	2.3	2.5	2.6	2.5	2.5
3.5	3.8	3.2	3.0	3.4	3.4	3.4	3.8	3.4	3.6	3.4	3.8	3.8	4.2	5.2	3.7	4.0	3.9	3.8	3.9	3.2	3.7	3.7	3.5	3.9
3.7	4.2	3.6	3.3	3.8	4.3	3.8	4.3	3.9	4.0	4.0	4.2	4.3	4.6	5.5	4.3	4.6	4.4	4.3	4.3	3.6	4.4	3.7	3.6	4.2

③ 全窒素年平均値(mg/L)

No.	海域名	地点名	類型	S51	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63	H1	H2	Н3
53	第4工区東	深江フェリー埠頭		1.2	0.9	1.6	2.4	1.4	1.7	1.8	1.4	1.4	1.8	2.1	1.9	2.3	1.2	1.1	0.9
55	六甲アイランド東	フェリー埠頭		-	-	-	-	1	-	1.3	1.0	1.4	1.3	1.5	1.2	1.2	1.4	1.5	1.3
56	第2工区南	六甲大橋		1.2	1.1	1.2	1.8	1.4	1.4	1.3	1.3	1.6	1.6	2.1	2.1	2.0	1.9	1.6	1.4
58	摩耶埠頭	第四突堤南		0.9	0.8	0.9	1.3	1.4	1.1	1.3	0.7	0.8	1.0	1.3	1.3	1.0	1.3	1.2	0.8
59	葺合港	摩耶大橋		0.8	0.9	8.0	1.0	8.0	8.0	0.7	0.7	0.5	1.1	1.2	1.0	8.0	8.0	0.7	0.7
60	ポートアイランド東	中埠頭東		0.8	8.0	0.7	1.3	1.8	8.0	8.0	0.6	1.0	1.0	1.2	1.0	8.0	8.0	0.6	0.6
61	神戸港東	神戸大橋		0.7	0.7	0.7	1.4	0.7	0.8	0.9	0.5	0.8	1.1	1.1	1.0	1.0	0.9	0.6	0.6
63	神戸港西	兵庫第二突堤南	IV	1.0	0.7	0.8	1.3	0.8	0.7	0.7	0.6	0.7	1.2	1.2	0.8	0.6	1.2	0.9	0.6
65	六甲アイランド南	沖合(3)	類	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	第4工区南	沖合(1)	型	-	-	-	-	-	-	-	-	-	-	-	-	1.1	1.3	0.8	1.1
79	ポートアイランド東	第6防波堤北		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
80	神戸港	中央		-	-	-	-	-	-	-	-	-	-	-	-	0.9	1.0	0.5	0.6
64	兵庫運河	材木橋		2.7	2.8	3.1	3.0	3.0	3.9	3.5	2.8	2.8	2.9	3.9	2.7	3.4	3.4	4.7	2.7
補11	東部運河東	東魚崎橋		5.3	7.8	6.4	6.7	8.4	7.1	6.7	14	9.9	15	12	15	16	1.6	1.4	1.1
	六甲水路	住吉川河口南		2.1	2.2	3.0	3.1	3.1	3.7	4.9	3.7	2.2	3.0	5.0	8.1	6.8	1.6	1.4	1.3
補19	東神戸水路	東部市場西		1.2	1.5	1.3	1.9	1.8	1.9	4.7	1.5	1.8	2.7	2.2	2.4	2.2	1.5	1.2	0.9
補20		石屋川河口南		1.0	1.0	0.8	1.2	1.1	1.0	1.6	0.9	8.0	1.2	1.4	2.2	1.1	1.0	0.9	0.9
	ポートアイランド南			_	-	-	-	-	-	-	-	-	-	-	0.7	0.7	0.6	0.6	0.5
		沖合(1)		-	-	-	-	-	-	-		8.0	1.2	1.1	1.0	1.0	1.1	0.7	0.7
	第1防波堤南	沖合		_	-	-	-	-	-	-		0.6	1.0	0.9	8.0	0.5	0.6	0.5	0.4
	苅藻南	神戸灯台南	ш	0.7	0.4	0.6	1.1	0.5	0.6	8.0	0.4	0.7	8.0	1.0	8.0	0.6	0.6	0.5	0.4
	苅藻島南	沖合	類	_	-	-	-	-	-	-		-	1.6	8.0	0.4	0.4	0.6	0.4	0.4
	長田港	港口	型	1.0	0.7	8.0	1.2	1.0	0.7	1.6	0.5	0.7	0.9	1.0	1.2	8.0	1.2	0.6	0.7
	第4工区南	沖合(2)		_	-	-	-	-	-	-	-	-	-	-	-	0.9	1.1	0.9	0.7
		観測塔		-	-	-	-	-	-	-	-	-	-	-	-	0.8	0.9	0.7	0.6
		沖合(2)		_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
補17		苅藻橋		1.8	1.5	1.3	1.4	1.7	1.7	1.6	2.2	1.5	-	-	-	1.5	1.6	1.6	1.2
	須磨港	西防波堤		0.5	0.4	0.5	1.0	0.6	0.4	0.5	0.3	0.6	8.0	8.0	0.7	0.5	0.9	0.4	0.5
71	777FH 1-7 74	JR須磨駅南		0.5	0.3	0.4	0.9	0.5	0.4	0.5	0.4	0.5	0.6	0.6	0.6	0.5	0.5	0.4	0.4
	須磨海域	海釣公園		-	-	-	-	-	-	-	-	-	0.7	0.5	0.6	0.3	8.0	0.4	0.5
	塩屋海域	塩屋漁港	П	0.5	0.3	0.4	0.9	0.6	0.3	0.5	0.4	0.5	0.6	0.5	0.4	0.4	0.5	0.4	0.4
	垂水海域	垂水漁港	類型	0.4	0.4	0.4	0.5	0.5	0.3	0.3	0.3	0.3	0.4	0.6	0.4	0.4	0.4	0.3	0.5
	舞子海域	舞子漁港	坐	-	-	-	-	0.4	0.7	0.4	0.4	0.4	0.4	0.6	0.5	0.3	0.3	0.3	0.4
	ポートアイランド南			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	垂水海域	沖合		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
補18	垂水海域	平磯海釣公園		-	-	-	-	-	-	-	-	-	-	-	-	0.4	0.4	0.3	0.4

- 注1) T-Nの測定方法は、平成4年度から告示法に変更した。
- 注2) No.65 六甲アイランド・沖合(3)は平成7年度より地点を移動し、地点名を六甲アイランド・沖合(1)から変更した。
- 注3) No.82 ポートアイランド南・沖合(3)は平成7年度より地点を移動し、地点名をポートアイランド南・沖合(2)から変更した。

【T-N】年平均値の類型別平均値(mg/L) ※平均値には、補助地点は含まない 水域類型 S51 S52 S53 S54 S55 | S56 | S57 | S58 | S59 | S60 | S61 | S62 S63 H1 H2 Н3 0.5 0.4 0.4 0.8 0.5 0.4 0.4 0.4 0.5 0.6 0.6 0.5 0.4 0.6 0.4 0.5 Ⅱ類型 0.9 0.6 0.7 1.2 8.0 0.7 1.2 0.5 0.7 1.1 1.0 0.8 0.7 8.0 0.6 0.6 Ⅲ類型 Ⅳ類型 1.2 1.1 1.2 1.7 1.4 1.4 1.4 1.1 1.2 1.4 1.7 1.4 1.4 1.4 1.3 1.0

(注) 平成7年2月、大阪湾における全窒素、全燐に係る類型指定がされたため、これ以前についても $II \cdot III \cdot III$ 類型別に評価している。

H4	Н5	Н6	H7	Н8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	H24	H25
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
1.5	1.5	1.5	1.2	1.0	0.96	1.1	0.94	1.0	1.1	1.0	0.92	1.0	0.86	0.76	0.70	0.85	0.53	0.68	0.71	0.56	0.50
-	-	1	1	1	-	-	1	-	1	-	-	1	-	-	-	1	-	-	-	-	-
0.75	0.74	0.80	0.67	0.60	0.72	0.75	0.70	0.63	0.66	0.71	0.61	0.59	0.56	0.59	0.50	0.50	0.43	0.49	0.51	0.39	0.30
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.67	0.57	0.61	0.64	0.56	0.61	0.73	0.68	0.68	0.73	0.62	0.56	0.55	0.52	0.56	0.51	0.45	0.41	0.44	0.42	0.36	0.31
_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
_	-	-	0.79	0.76	0.87	0.88	0.91	0.93	0.91	0.70	0.67	0.79	0.63	0.61	0.54	0.72	0.47	0.51	0.63	0.45	0.37
0.99	0.94	0.84	0.79	0.79	0.86	0.96	0.87	0.93	0.93	0.76	0.75	0.76	0.70	0.60	0.53	0.66	0.52	0.55	0.64	0.46	0.38
0.76	0.82	0.77	0.65	0.62	0.68	0.76	0.71	0.80	0.70	0.69	0.56	0.61	0.56	0.53	0.47	0.52	0.42	0.43	0.52	0.37	0.30
0.66	0.69	0.68	0.56	0.53	0.60	0.65	0.69	0.75	0.63	0.52	0.48	0.43	0.50	0.52	0.47	0.39	0.36	0.40	0.40	0.31	0.28
4.6	2.5	2.6	3.2	3.5	2.7	1.8	2.5	2.7	2.5	1.5	1.6	1.9	1.9	1.7	1.4	1.7	3.1	3.3	0.69	0.35	0.37
0.80	1.0	2.7	1.7	0.86	0.85	1.1	0.90	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.84	0.75	1.3	0.92	0.84	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-	-	-
1.0	0.74	1.1	0.87	0.67	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.67	0.59	0.64	0.60	0.49	0.51	0.69	0.54	0.62	0.66	0.51	0.50	0.58	0.45	0.50	0.41	0.50	0.36	0.41	0.45	0.33	0.27
0.76	0.85	0.82			-	_		-	-		-		-	-		_	-	-	-	_	-
0.58	0.56	0.50	0.55	0.47	0.52	0.58	0.58	0.53	0.62	0.47	0.44	0.40	0.44	0.45	0.42	0.40	0.32	0.37	0.41	0.30	0.23
0.61	0.57	0.51	0.52	0.46	0.55	0.57	0.66	0.61	0.55	0.59	0.45	0.42	0.43	0.48	0.43	0.40	0.32	0.38	0.41	0.34	0.26
0.53	0.53	0.47	0.47	0.42	0.50	0.55	0.55	0.61	0.58	0.45	0.42	0.39	0.47	0.44	0.37	0.35	0.30	0.33	0.35	0.30	0.22
0.67	0.52	0.51	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.86	0.92	1.0	0.80	0.81	0.75	0.87	0.80	0.75	0.79	0.71	0.66	0.72	0.63	0.60	0.50	0.64	0.48	0.50	0.61	0.42	0.36
0.75	0.73	0.72	0.66	0.61	0.61	0.73	0.65	0.76	0.82	0.63	0.60	0.60	0.56	0.50	0.47	0.56	0.40	0.46	0.49	0.37	0.30
0.74	0.65	0.61	0.65	0.56	0.60	0.66	0.60	0.71	0.76	0.53	0.53	0.57	0.48	0.48	0.44	0.49	0.37	0.39	0.51	0.37	0.29
-	- 0.46	-	- 0.46	- 0.46	-	-	-	- 0.40	-		- 0.40	-	- 0.40	- 0.40	- 0.47	- 40	-	-	-	-	-
0.64	0.46	0.51	0.42	0.43	0.41	0.50	0.57	0.49	0.51	0.40	0.40	0.36	0.40	0.43	0.47	0.43	0.30	0.30	0.38	0.31	0.24
0.46	0.44	0.43	0.38	0.36	0.42	0.46	0.49	0.49	0.42	0.38	0.34	0.29	0.36	0.37	0.32	0.33	0.26	0.28	0.31	0.27	0.20
0.52	0.45	0.50	0.38	0.34	0.37	0.46	0.47	0.50	0.44	0.34	0.32	0.29	0.35	0.39	0.27	0.31	0.24	0.27	0.30	0.27	0.19
		- 0.49			0.42			- 0.25			- 0.21	- 0.26		0.34	- 0.24		- 0.25	- 0.24	- 0.27	- 0.22	- 0.20
0.49	0.48	0.48	0.34	0.36	0.43	0.53	0.48	0.35	0.41	0.26	0.31	0.26	0.35		0.24	0.30	0.25	0.24	0.27	0.23	0.20
0.33	0.35	0.35	0.26	0.29	0.31	0.34	0.36	0.34	0.38	0.28	0.28	0.26		0.28	0.21	0.22	0.23	0.20	0.21	0.19	0.19
	0.56	0.52	0.47	0.41	0.47		0.51	0.55	0.59	0.45	0.41	0.41	0.38	0.44	0.35	0.38		0.34	0.39	0.30	0.22
0.35	0.37	0.34	0.36	0.30	0.39	0.37	0.39	0.49	0.41	0.33	0.27	0.25	0.25	0.27	0.21	0.27	0.22	0.22	0.25	0.21	0.19
					l												l	l	l		

H4	H5	Н6	H7	Н8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	H24	H25
0.48	0.44	0.45	0.37	0.36	0.40	0.46	0.47	0.46	0.45	0.35	0.33	0.30	0.33	0.36	0.30	0.32	0.26	0.26	0.30	0.25	0.20
0.69	0.66	0.64	0.61	0.55	0.58	0.66	0.63	0.66	0.68	0.56	0.51	0.52	0.49	0.49	0.43	0.48	0.36	0.41	0.46	0.35	0.28
1.4	1.1	1.1	1.1	1.0	1.0	0.95	1.0	1.1	1.0	0.81	0.77	0.83	0.78	0.73	0.64	0.72	0.78	0.85	0.57	0.41	0.35

④ 全燐年平均値(mg/L)

No	海域名	地点名	類型	S51	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63	H1	H2	Н3
53	第4工区東	深江フェリー埠頭		0.13	0.11	0.16	0.32	0.15	0.17	0.14	0.13	0.10	0.14	0.19	0.26	0.25	0.10	0.11	0.12
55	六甲アイランド東	フェリー埠頭		-	-	-	-	-	-	0.11	0.09	0.08	0.09	0.11	0.10	0.10	0.09	0.10	0.10
56	第2工区南	六甲大橋		0.12	0.13	0.14	0.23	0.14	0.14	0.13	0.11	0.10	0.10	0.13	0.17	0.16	0.10	0.11	0.11
58	摩耶埠頭	第四突堤南		0.08	0.09	0.09	0.18	0.15	0.11	0.12	0.08	0.07	0.08	0.12	0.14	0.11	0.08	0.09	0.08
59	葺合港	摩耶大橋		0.10	0.08	0.09	0.15	0.10	0.11	0.07	0.08	0.09	0.08	0.09	0.13	0.09	0.09	0.09	0.09
60	ポートアイランド東	中埠頭東		0.08	0.09	0.09	0.18	0.24	0.09	0.09	0.07	0.09	0.08	0.10	0.10	0.08	0.06	0.06	0.07
61	神戸港東	神戸大橋		0.08	0.07	0.09	0.17	0.08	0.09	0.09	0.07	0.07	0.10	0.08	0.09	0.08	0.06	0.06	0.06
63	神戸港西	兵庫第二突堤南	IV	0.09	0.09	0.08	0.17	0.10	0.07	0.07	0.05	0.08	0.07	0.09	0.05	0.07	0.05	0.06	-
65	六甲アイランド南	沖合(3)	類	-	1	-	-	-	-	-	-	-	-	1	-	-	1	-	-
76	第4工区南	沖合(1)	型	ı	1	ı	ı	-	-	-	-	ı	ı	1	ı	0.13	0.09	0.08	0.09
79	ポートアイランド東	第6防波堤北		ı	1	ı	ı	-	-	-	-	ı	ı	1	ı	ı	1	ı	_
80	神戸港	中央		ı	1	ı	ı	ı	-	-	-	ı	1	1	ı	0.06	0.06	0.05	0.06
64	兵庫運河	材木橋		0.33	0.45	0.32	0.45	0.28	0.34	0.57	0.25	0.21	0.20	0.20	0.16	0.16	0.18	0.20	0.13
補11	東部運河東	東魚崎橋		0.5	0.71	0.47	0.55	0.73	0.56	0.36	0.57	0.57	0.60	0.68	0.45	0.48	0.11	0.14	0.10
補12	六甲水路	住吉川河口南		0.21	0.21	0.29	0.32	0.30	0.27	0.37	0.20	0.13	0.20	0.23	0.49	0.34	0.20	0.19	0.19
補19	東神戸水路	東部市場西		0.15	0.14	0.16	0.27	0.18	0.18	0.36	0.12	0.13	0.20	0.20	0.26	0.18	0.11	0.15	0.10
補20	東部運河西	石屋川河口南		0.14	0.13	0.12	0.17	0.15	0.12	0.17	0.10	0.08	0.09	0.15	0.13	0.09	0.10	0.13	0.11
62	ポートアイランド南	沖合(1)		-	-	-	-	-	-	-	-	-	-	-	0.07	0.06	0.05	0.05	0.06
65	六甲アイランド南	沖合(1)		-	-	-	-	-	-	-	-	0.07	0.08	0.08	0.09	0.09	0.08	0.07	0.07
66	第1防波堤南	沖合		-	-	-	-	-	-	-	-	0.05	0.07	0.05	0.07	0.05	0.05	0.04	0.05
67	苅藻南	神戸灯台南		0.07	0.08	0.07	0.13	0.05	0.06	0.06	0.05	0.06	0.07	0.06	0.07	0.05	0.05	0.04	0.05
68	苅藻島南	沖合	II 類	-	-	-	-	-	-	-	-	-	0.12	0.05	0.06	0.05	0.04	0.04	0.05
69	長田港	港口	型型	0.12	0.12	0.09	0.16	0.10	0.08	0.08	0.07	0.06	0.07	0.05	0.09	0.05	0.06	0.05	0.06
	第4工区南	沖合(2)		-	-	-	-	-	-	-	-	-	-	-	-	-	0.08	0.07	0.06
	六甲アイランド南	観測塔		-	-	-	-	-	-	-	-	-	-	-	-	0.07	0.06	0.05	0.06
81	六甲アイランド南	沖合(2)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
補17	苅藻運河	苅藻橋		0.28	0.22	0.19	0.19	0.21	0.15	0.16	0.18	0.11	-	-	-	0.12	0.12	0.11	0.09
70	須磨港	西防波堤		0.08	0.06	0.06	0.13	0.07	0.05	0.05	0.04	0.05	0.05	0.04	0.07	0.04	0.06	0.04	0.05
71	須磨海域	JR須磨駅南		0.11	0.06	0.05	0.14	0.06	0.04	0.05	0.04	0.04	0.05	0.04	0.04	0.04	0.04	0.03	0.04
72	須磨海域	海釣公園		-	-			_	_	_	-	-	0.06	0.04	0.06	0.03	0.05	0.03	0.04
73	塩屋海域	塩屋漁港	П	0.05	0.06	0.05	0.14	0.06	0.04	0.05	0.04	0.05	0.04	0.03	0.04	0.03	0.04	0.03	0.04
74	垂水海域	垂水漁港	類	0.04	0.06	0.05	0.06	0.05	0.04	0.04	0.04	0.04	0.03	0.04	0.04	0.04	0.03	0.03	0.04
75	舞子海域	舞子漁港	型	1	-	-	-	0.06	0.08	0.07	0.05	0.04	0.03	0.03	0.03	0.03	0.03	0.02	0.03
82	ポートアイランド南	沖合(3)		1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	垂水海域	沖合		-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
補18	垂水海域	平磯海釣公園		-	-	-	-	-	-	-	-	-	-	-	-	0.03	0.03	0.03	0.04

- 注1) T-Pの測定方法は、平成4年度から告示法に変更した。
- 注2) No.65 六甲アイランド・沖合(3)は平成7年度より地点を移動し、地点名を六甲アイランド・沖合(1)から変更した。
- 注3) No.82 ポートアイランド南・沖合(3)は平成7年度より地点を移動し、地点名をポートアイランド南・沖合(2)から変更した。

【TーP】年平均値の類型別平均値(mg/L) ※平均値には、補助地点は含まない。

	<u>/双工</u>	/J'] *		1115/ L	<u>-/ /</u>	V 1	正しら	、IIII III	心示る	<u> </u>						
水域類型	S51	S52	S53	S54	S55	S56	S57	S58	S59	S60	S61	S62	S63	H1	H2	Н3
Ⅱ類型	0.07	0.06	0.05	0.12	0.06	0.05	0.05	0.04	0.04	0.04	0.04	0.05	0.04	0.04	0.03	0.04
Ⅲ類型	0.10	0.10	0.08	0.15	0.08	0.07	0.07	0.06	0.06	0.08	0.06	0.08	0.06	0.06	0.05	0.06
Ⅳ類型	0.13	0.14	0.13	0.23	0.16	0.14	0.15	0.10	0.10	0.10	0.12	0.13	0.12	0.09	0.09	0.09

(注) 平成7年2月、大阪湾における全窒素、全燐に係る類型指定がされたため、これ以前についてもⅡ・Ⅲ・Ⅲ類型別に評価している。

Hat																						
Mathematical Colorado	H4	H5	H6	H7	H8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	H24	H25
	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
Mathematical Math		-			-					-		-		-			-			-	-	
	0.092	0.089		0.084		0.084		0.091	0.092	0.081	0.089	0.073	0.078	0.081	0.073		0.091	0.054	0.061	0.054		0.050
	_	-	-	-	-	-	-			-		-	-	-	-	-	-	-		-		
	0.065	0.064	0.083	0.064	0.061	0.067		0.058	0.073	0.059		0.055	0.055	0.060	0.057		0.061	0.047		0.045	0.043	0.040
	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
	0.056	0.055	0.062	0.059	0.059	0.063		0.061	0.061	0.058	0.060	0.052	0.050	0.056	0.050		0.052	0.043	0.039	0.041	0.036	0.037
0.000 0.084 0.094 0.074 0.074 0.078 0.072 0.073 0.073 0.063 0.066 0.071 0.056 0.073 0.056 0.071 0.056 0.073 0.052 0.057 0.052 0.057 0.052 0.057 0.052 0.053 0.053 0.053 0.053 0.053 0.054 0.042 0.053 0.053 0.054 0.040 <th< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.066 0.068 0.078 0.076 0.061 0.061 0.061 0.052 0.052 0.052 0.053 0.053 0.054 0.054 0.052 <th< td=""><td>-</td><td>-</td><td>-</td><td>0.064</td><td>0.072</td><td>0.078</td><td>0.081</td><td>0.069</td><td>0.071</td><td>0.071</td><td>0.070</td><td>0.062</td><td>0.073</td><td>0.071</td><td>0.059</td><td>0.057</td><td>0.074</td><td>0.045</td><td>0.044</td><td>0.055</td><td>0.042</td><td>0.042</td></th<>	-	-	-	0.064	0.072	0.078	0.081	0.069	0.071	0.071	0.070	0.062	0.073	0.071	0.059	0.057	0.074	0.045	0.044	0.055	0.042	0.042
0.056 0.056 0.056 0.051 0.059 0.057 0.052 0.053 0.053 0.040 0.040 0.047 0.040 0.047 0.040 0.047 0.040 0.059 0.030 0.030 0.030 0.030 0.050 0.051 0.010 0.010 0.011 0.11 0.019 0.020	0.070	0.082	0.094	0.074	0.074	0.085	0.078	0.072	0.076	0.073	0.071	0.063	0.066	0.071	0.056	0.059	0.071	0.050	0.051	0.051	0.042	0.046
0.11 0.11 0.11 0.11 0.10 0.08 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.09 0.08 0.08 0.06 0.08 0.08 0.08 0.08 0.09 0.08 0.01 0.08 0.09 0.08 0.09 0.08 0.09 0.08 0.09 0.08 0.09 0.08 0.09 <th< td=""><td>0.066</td><td>0.068</td><td>0.078</td><td>0.062</td><td>0.060</td><td>0.071</td><td>0.061</td><td>0.064</td><td>0.061</td><td>0.058</td><td>0.062</td><td>0.057</td><td>0.057</td><td>0.062</td><td>0.053</td><td>0.053</td><td>0.058</td><td>0.046</td><td>0.042</td><td>0.045</td><td>0.036</td><td>0.039</td></th<>	0.066	0.068	0.078	0.062	0.060	0.071	0.061	0.064	0.061	0.058	0.062	0.057	0.057	0.062	0.053	0.053	0.058	0.046	0.042	0.045	0.036	0.039
0.080 0.59 0.24 0.11 0.079 0.087 0.10 0.066 -	0.056	0.056	0.060	0.051	0.049	0.062	0.057	0.052	0.056	0.053	0.054	0.045	0.040	0.047	0.046	0.047	0.044	0.039	0.038	0.040	0.033	0.037
Note	0.17	0.11	0.11	0.10	0.085	0.11	0.11	0.11	0.13	0.12	0.083	0.063	0.068	0.067	0.061	0.059	0.065	0.064	0.055	0.047	0.044	0.045
0.086 0.057 0.16 0.079 0.091 <t< td=""><td>0.080</td><td>0.059</td><td>0.24</td><td>0.11</td><td>0.079</td><td>0.087</td><td>0.10</td><td>0.066</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	0.080	0.059	0.24	0.11	0.079	0.087	0.10	0.066	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.078 0.083 0.12 0.078 0.074 0.09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.056 0.054 0.052 0.050 0.046 0.059 0.050 0.052 0.053 0.044 0.047 0.052 0.048 0.047 0.048 0.042 0.045 0.052 0.033 0.029 0.033 0.068 0.071 0.070	0.086	0.057	0.16	0.079	0.091	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.068 0.071 0.070 - <	0.078	0.063	0.12	0.078	0.074	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.047 0.048 0.042 0.049 0.043 0.043 0.043 0.043 0.043 0.043 0.044 0.043 0.044 0.043 0.044 0.043 0.044 0.033 0.044 0.033 0.044 0.033 0.044 0.033 0.042 0.033 0.042 0.033 0.042 0.033 0.042 0.033 0.042 0.033 0.042 0.033 0.042 0.033 0.043 0.043 0.043 0.043 0.043 0.043 0.044 0.033 0.044 0.033 0.044 0.033 0.044 0.033 0.044 0.033 0.044 0.033 0.044 0.033 0.044 0.033 0.044 0.043 0.044 0.043 0.044 0.043 0.044 0.043 0.044 0.045 0.045 0.045 0.045 0.045 0.045 0.065 0.062 0.052 0.055 0.056 0.057 0.045 0.065 0.062 0.052 0.052 0.055 0.056 <th< td=""><td>0.056</td><td>0.054</td><td>0.052</td><td>0.050</td><td>0.046</td><td>0.049</td><td>0.050</td><td>0.050</td><td>0.052</td><td>0.053</td><td>0.044</td><td>0.047</td><td>0.052</td><td>0.048</td><td>0.042</td><td>0.045</td><td>0.052</td><td>0.037</td><td>0.036</td><td>0.038</td><td>0.029</td><td>0.033</td></th<>	0.056	0.054	0.052	0.050	0.046	0.049	0.050	0.050	0.052	0.053	0.044	0.047	0.052	0.048	0.042	0.045	0.052	0.037	0.036	0.038	0.029	0.033
0.053 0.054 0.044 0.045 0.043 0.060 0.054 0.049 0.045 0.049 0.045 0.049 0.045 0.049 0.045 0.049 0.045 0.049 0.045 0.049 0.049 0.040 0.040 0.049 0.040 0.049 <td< td=""><td>0.068</td><td>0.071</td><td>0.070</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></td<>	0.068	0.071	0.070	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.045 0.045 0.039 0.042 0.045 0.047 0.044 0.040 0.044 0.037 0.040 0.032 0.042 0.038 0.039 0.038 0.029 0.031 0.033 0.030 0.032 0.034 0.038 0.038 0.029 0.031 0.033 0.034 0.032 0.044 0.032 0.044 0.032 0.044 0.032 0.043 0.038 0.029 0.031 0.033 0.034 0.044 0.034 0.034 0.044 0.034 0.034 0.044 0.034 0.045 0.040 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.035 0.045 0.045 <th< td=""><td>0.047</td><td>0.048</td><td>0.042</td><td>0.049</td><td>0.043</td><td>0.051</td><td>0.048</td><td>0.043</td><td>0.048</td><td>0.049</td><td>0.040</td><td>0.038</td><td>0.038</td><td>0.040</td><td>0.038</td><td>0.048</td><td>0.043</td><td>0.034</td><td>0.033</td><td>0.040</td><td>0.027</td><td>0.029</td></th<>	0.047	0.048	0.042	0.049	0.043	0.051	0.048	0.043	0.048	0.049	0.040	0.038	0.038	0.040	0.038	0.048	0.043	0.034	0.033	0.040	0.027	0.029
0.056 0.043 0.039 - <	0.053	0.051	0.044	0.045	0.043	0.060	0.054	0.049	0.051	0.042	0.043	0.040	0.038	0.042	0.037	0.041	0.042	0.034	0.033	0.037	0.033	0.032
0.080 0.088 0.072 0.083 0.074 0.072 0.084 0.067 0.068 0.062 0.058 0.064 0.061 0.064 0.061 0.064 0.069 0.048 0.045 0.042 0.043 0.044 0.051 0.059 0.040 0.043 0.044 0.045 0.045 0.061 0.047 0.045 0.061 0.047 0.045 0.045 0.046 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 <th< td=""><td>0.045</td><td>0.045</td><td>0.039</td><td>0.042</td><td>0.045</td><td>0.047</td><td>0.044</td><td>0.040</td><td>0.043</td><td>0.044</td><td>0.037</td><td>0.040</td><td>0.032</td><td>0.042</td><td>0.034</td><td>0.038</td><td>0.038</td><td>0.029</td><td>0.031</td><td>0.033</td><td>0.030</td><td>0.028</td></th<>	0.045	0.045	0.039	0.042	0.045	0.047	0.044	0.040	0.043	0.044	0.037	0.040	0.032	0.042	0.034	0.038	0.038	0.029	0.031	0.033	0.030	0.028
0.058 0.062 0.059 0.058 0.059 0.057 0.057 0.050 0.060 0.052 0.055 0.048 0.051 0.059 0.039 0.040 0.043 0.034 <th< td=""><td>0.056</td><td>0.043</td><td>0.039</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	0.056	0.043	0.039	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.058 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.056 0.057 0.049 0.052 0.047 0.045 0.045 0.043 0.044 0.051 0.034 0.044 0.051 0.034 0.044 0.051 0.034 0.044 0.051 0.034 0.044 0.051 0.034 0.044 0.051 0.034 0.044 0.051 0.034 0.044 0.051 0.034 0.044 0.045 0.044 0.045 0.044 0.045 0.044 0.045 0.044 0.045 0.044 0.045 0.044 0.035 0.034 0.034 0.035 0.034 0.034 0.035 0.034 0.034 0.035 0.034 0.032 0.034 0.034 0.035 0.034 0.032 0.034 0.034 0.035 0.034 0.032 0.034 0.032 0.034 0.032 0.034 0.032 0.034 0.032 <th< td=""><td>0.080</td><td>0.068</td><td>0.088</td><td>0.072</td><td>0.083</td><td>0.074</td><td>0.072</td><td>0.068</td><td>0.067</td><td>0.065</td><td>0.062</td><td>0.058</td><td>0.063</td><td>0.064</td><td>0.061</td><td>0.054</td><td>0.069</td><td>0.048</td><td>0.045</td><td>0.052</td><td>0.041</td><td>0.042</td></th<>	0.080	0.068	0.088	0.072	0.083	0.074	0.072	0.068	0.067	0.065	0.062	0.058	0.063	0.064	0.061	0.054	0.069	0.048	0.045	0.052	0.041	0.042
<td>0.058</td> <td>0.062</td> <td>0.059</td> <td>0.058</td> <td>0.059</td> <td>0.057</td> <td>0.057</td> <td>0.054</td> <td>0.057</td> <td>0.060</td> <td>0.060</td> <td>0.052</td> <td>0.055</td> <td>0.056</td> <td>0.048</td> <td>0.051</td> <td>0.059</td> <td>0.039</td> <td>0.040</td> <td>0.043</td> <td>0.034</td> <td>0.037</td>	0.058	0.062	0.059	0.058	0.059	0.057	0.057	0.054	0.057	0.060	0.060	0.052	0.055	0.056	0.048	0.051	0.059	0.039	0.040	0.043	0.034	0.037
0.040 0.041 0.037 0.036 0.036 0.042 0.042 0.041 0.040 0.031 0.032 0.031 0.036 0.032 <th< td=""><td>0.058</td><td>0.055</td><td>0.055</td><td>0.055</td><td>0.055</td><td>0.056</td><td>0.057</td><td>0.049</td><td>0.052</td><td>0.061</td><td>0.047</td><td>0.045</td><td>0.050</td><td>0.045</td><td>0.043</td><td>0.044</td><td>0.051</td><td>0.036</td><td>0.034</td><td>0.044</td><td>0.035</td><td>0.036</td></th<>	0.058	0.055	0.055	0.055	0.055	0.056	0.057	0.049	0.052	0.061	0.047	0.045	0.050	0.045	0.043	0.044	0.051	0.036	0.034	0.044	0.035	0.036
0.040 0.041 0.037 0.036 0.036 0.042 0.042 0.041 0.040 0.031 0.032 0.031 0.036 0.032 <th< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.046	0.048	0.044	0.045	0.040	0.040	0.047	0.048	0.049	0.045	0.036	0.034	0.036	0.034	0.037	0.036	0.050	0.041	0.033	0.029	0.037	0.026	0.031
<	0.040	0.041	0.037	0.036	0.036	0.042	0.042	0.041	0.040	0.035	0.034	0.032	0.029	0.034	0.031	0.036	0.035	0.031	0.026	0.033	0.026	0.026
0.035 0.036 0.037 0.033 0.035 0.036 0.037 0.032 0.036 0.037 0.037 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.032 0.031 0.031 0.032 0.031 0.032 0.035 0.031 0.032 0.035 0.031 0.032 0.035 0.031 0.032 0.035 0.031 0.035 0.031 0.035 0.031 0.035 0.031 0.035 0.031 0.035 0.031 0.035 0.031 0.035 <th< td=""><td>0.046</td><td>0.040</td><td>0.038</td><td>0.039</td><td>0.036</td><td>0.043</td><td>0.039</td><td>0.039</td><td>0.037</td><td>0.033</td><td>0.032</td><td>0.032</td><td>0.027</td><td>0.032</td><td>0.031</td><td>0.031</td><td>0.036</td><td>0.029</td><td>0.026</td><td>0.032</td><td>0.027</td><td>0.025</td></th<>	0.046	0.040	0.038	0.039	0.036	0.043	0.039	0.039	0.037	0.033	0.032	0.032	0.027	0.032	0.031	0.031	0.036	0.029	0.026	0.032	0.027	0.025
0.021 0.031 0.032 0.030 0.030 0.034 0.031 0.035 0.028 0.028 0.028 0.027 0.025 0.025 0.025 0.025 0.025 0.025 0.028 0.028 0.028 0.024 0.027 0.025 0.046 0.048 0.047 0.041 0.044 0.045 0.041 0.041 0.042 0.041 0.035 0.035 0.036 0.036 0.036 0.034 0.040 0.029 0.035 0.031 0.027	-	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_	-	_	_	-	-
0.046 0.048 0.047 0.045 0.041 0.044 0.045 0.042 0.045 0.042 0.046 0.041 0.035 0.035 0.036 0.036 0.036 0.035 0.034 0.040 0.032 0.029 0.035 0.031 0.027	0.035	0.036	0.037	0.033	0.035	0.036	0.057	0.037	0.032	0.034	0.031	0.032	0.025	0.034	0.030	0.026	0.035	0.031	0.025	0.031	0.027	0.027
	0.021	0.031	0.032	0.030	0.030	0.034	0.031	0.035	0.028	0.028	0.026	0.027	0.025	0.025	0.025	0.023	0.028	0.028	0.024	0.027	0.024	0.025
0.029 0.033 0.030 0.033 0.033 0.033 0.040 0.034 0.037 0.028 0.027 0.029 0.025 0.027 0.024 0.034 0.026 0.023 0.031 0.028 0.025 -	0.046	0.048	0.047	0.045	0.041	0.044	0.045	0.042	0.046	0.041	0.035	0.035	0.036	0.036	0.035	0.034	0.040	0.032	0.029	0.035	0.031	0.027
	0.029	0.033	0.030	0.033	0.033	0.040	0.034	0.037	0.037	0.028	0.027	0.029	0.025	0.027	0.025	0.024	0.034	0.026	0.023	0.031	0.028	0.025
	-	_	_	_	-	-	-	-	_	-	-	_	-	-	_	-	-	-	-	-	_	-

H4	H5	H6	H7	H8	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	H24	H25
0.038	0.039	0.038	0.037	0.036	0.041	0.042	0.040	0.038	0.034	0.031	0.032	0.028	0.032	0.030	0.032	0.036	0.030	0.026	0.032	0.027	0.027
0.058																			0.041		0.034
0.082	0.075	0.088	0.070	0.069	0.078	0.074	0.072	0.078	0.072	0.069	0.059	0.061	0.064	0.057	0.058	0.065	0.049	0.047	0.047	0.041	0.042

資料編

Ⅵ 参考資料

1. 水質汚濁に係る環境基準について (昭和 46 年 12 月 28 日環境庁告示第 59 号)

(改正:昭49環告63、昭50環告3、昭57環告41、昭57環告140、昭60環告29、昭61環告1、平3環告78、平5環告16、平5環告65、平7環告17、平10環告15、平11環告14、平12環告22、平15環告123、平20環告40、平21環告78、平23環告94、平24環告84、平24環告127、平25環告30、平26環告39)

水質汚濁に係る環境基準は、「環境基本法 (平成5年法律第91号)」第16条第1項に基づき定められたものであり、人の健康の保護に関する環境基準と生活環境の保全に関する環境基準とに分かれている。

人の健康の保護に係る環境基準は、全公共用水域につき一律に適用されるものとして設定され、設定後直ちに達成維持すべきものとされている。

生活環境の保全に関する環境基準は、河川、湖沼、海域の利水目的に応じて水域別に設定されており、水域ごとに類型、達成期間が定められている。

(1) 人の健康の保護に関する環境基準

項目	基 準 値	測 定 方 法
カドミウム	0.003 mg/L以下	日本工業規格K0102(以下「規格」という。)55.2、55.3 又は55.4 に定める 方法
全 シ ア ン	検出されないこと	規格 38.1.2 及び 38.2 に定める方法、規格 38.1.2 及び 38.3 に定める方法又は規格 38.1.2 及び 38.5 に定める方法
鉛	0.01 mg/L以下	規格 54 に定める方法
六 価 ク ロ ム	0.05 mg/L以下	規格 65.2 に定める方法 (ただし、規格 65.2.6 に定める方法により汽水又は海水を測定する場合にあっては、日本工業規格 K 0170-7 の 7 の a) 又は b) に定める操作を行うものとする。)
砒素	0.01 mg/L以下	規格 61.2 、61.3 又は 61.4 に定める方法
総水銀	0.0005 mg/L以下	付表1に掲げる方法
アルキル水銀	検出されないこと	付表 2 に掲げる方法
P C B	検出されないこと	付表3に掲げる方法
ジクロロメタン	0.02 mg/L以下	日本工業規格K0125の5.1、5.2 又は5.3.2 に定める方法
四 塩 化 炭 素	0.002 mg/L以下	日本工業規格K0125の5.1、5.2、5.3.1、5.4.1 又は5.5 に定める方法
1, 2-ジクロロエタン	0.004 mg/L以下	日本工業規格K0125の5.1、5.2、5.3.1又は5.3.2に定める方法
1, 1-ジクロロエチレン	0.1 mg/L以下	日本工業規格K0125の5.1、5.2又は5.3.2に定める方法
シスー1, 2-ジクロロエチレン	0.04 mg/L以下	日本工業規格K0125の5.1、5.2又は5.3.2に定める方法
1, 1, 1-トリクロロエタン	1 mg/L以下	日本工業規格K0125の5.1、5.2、5.3.1、5.4.1 又は5.5 に定める方法
1, 1, 2-トリクロロエタン	0.006 mg/L以下	日本工業規格K0125の5.1、5.2、5.3.1、5.4.1 又は5.5 に定める方法
トリクロロエチレン	0.03 mg/L以下	日本工業規格K0125の5.1、5.2、5.3.1、5.4.1 又は5.5 に定める方法
テトラクロロエチレン	0.01 mg/L以下	日本工業規格K0125の5.1、5.2、5.3.1、5.4.1 又は5.5 に定める方法
1, 3-ジクロロプロペン (D-D)	0.002 mg/L以下	日本工業規格K0125の5.1、5.2又は5.3.1に定める方法
チゥラム	0.006 mg/L以下	付表4に掲げる方法
シマジン (CAT)	0.003 mg/L以下	付表5の第1又は第2に掲げる方法
チオベンカルブ(ベンチオカーブ)	0.02 mg/L以下	付表5の第1又は第2に掲げる方法
ベンゼン	0.01 mg/L以下	日本工業規格K0125の5.1、5.2又は5.3.2に定める方法
セレン	0.01 mg/L以下	規格 67.2 、67.3 又は 67.4 に定める方法
硝酸性窒素及び亜硝酸性 窒素	10 mg/L以下	硝酸性窒素にあっては規格 43.2.1、43.2.3、43.2.5 又は 43.2.6 に定める方法、亜硝酸性窒素にあっては規格 43.1 に定める方法
 	0.8 mg/L以下	規格 34.1 若しくは 34.4 に定める方法又は規格 34.1c) (注(⁶)第三文を除く。) に定める方法(懸濁物質及びイオンクロマトグラフ法で妨害となる物質が共存しない場合にあっては、これを省略することができる。) 及び付表 6 に掲げる方法
ほ う 素	1 mg/L以下	規格 47.1、47.3 又は 47.4 に掲げる方法
1,4-ジオキサン	0.05 mg/L以下	付表7に掲げる方法
		•

備考

- 1 基準値は年間平均値とする。ただし、全シアンに係る基準値については最高値とする。
- 2 「検出されないこと」とは、測定方法の欄に掲げる方法により測定した場合において、その結果が当該方法の定量限界を下回ることをいう。別表2において同じ。
- 3 海域については、ふっ素及びほう素の基準値は適用しない。
- 4 硝酸性窒素及び亜硝酸性窒素の濃度は、規格 43.2.1、43.2.3、43.2.5 又は 43.2.6 により測定された硝酸イオンの濃度 に換算係数 0.2259 を乗じたものと規格 43.1 により測定された亜硝酸イオンの濃度に換算係数 0.3045 を乗じたものの和とする。

(2) 生活環境の保全に関する環境基準

① 河川(湖沼を除く。)

T

項目			基	準	値	
類型	利用目的の 適応性	水素イオン濃度 (pH)	生物化学的 酸素要求量 (BOD)	浮遊物質量 (SS)	溶存酸素量 (DO)	大腸菌群数
AA	水 道 1 級 自然環境保全及びA 以下の欄に掲げるもの	6.5以上 8.5以下	1mg/L以下	25mg/L以下	7.5mg/L以上	50 MPN/100mL 以下
A	水 道 2 級 水 産 1 級 水 浴 及びB以下の欄に掲げるもの	6.5以上 8.5以下	2mg/L以下	25mg/L以下	7.5mg/L以上	1,000 MPN/100mL 以下
В	水 道 3 級 水 産 2 級 及びC以下の欄に掲げるもの	6.5以上 8.5以下	3mg/L以下	25mg/L以下	5mg/L以上	5,000 MPN/100mL 以下
С	水 産 3 級 工 業 用 水 1 級 及びD以下の欄に掲げるもの	6.5以上 8.5以下	5mg/L以下	50mg/L以下	5mg/L以上	
D	工業用水2級農業用水及びEの欄に掲げるもの	6.0以上 8.5以下	8mg/L以下	100mg/L以下	2mg/L以上	
Е	工業用水3級環境保定	6.0以上 8.5以下	10mg/L以下	ごみ等の浮遊が認 められないこと。	2mg/L以上	
借 孝	測 定 方 法	規格 12.1 に定め る方法又はガラス 電極を用いる水質 自動監視測定装置 によりこれと同程 度の計測結果の得 られる方法	法	付表 9 に掲げる方 法	規格 32 に定める 方法又は隔膜電極 を用いる水質自動 監視測定装置によ りこれと同程度の 計測結果の得られ る方法	

備考

- 1 基準値は、日間平均値とする(湖沼、海域もこれに準ずる。)。
- 2 農業用利水点については、水素イオン濃度 6.0 以上 7.5 以下、溶存酸素量 5mg/L 以上とする。(湖沼もこれに準ずる。)
- 3 水質自動監視測定装置とは、当該項目について自動的に計測することができる装置であって、計測結果を自動的に記録する機能を有するもの又はその機能を有する機器と接続されているものをいう(湖沼、海域もこれに準ずる。)。
- 4 最確数による定量法とは次のものをいう(湖沼、海域もこれに準ずる。)。

試料 10mL、1mL、0.1mL、0.0mL、0.0mL・ \cdots のように連続した 4 段階(試料量が 0.1mL 以下の場合は 1mL に希釈して用いる。)を 5 本ずつBGL B醗酵管に移植し、 $35\sim37$ °C、 48 ± 3 時間培養する。ガス発生を認めたものを大腸菌群陽性管とし、各試料量における陽性管数を求め、これから 100mL 中の最確数を最確数表を用いて算出する。この際、試料はその最大量を移植したものの全部か又は大多数が大腸菌群陽性となるように、また最少量を移植したものの全部か大多数が大腸菌群陰性となるように適当に希釈して用いる。なお、試料採取後、直ちに試験ができないときは、冷蔵して数時間以内に試験する。

- (注) 1 自然環境保全:自然探勝等の環境保全
 - 2 水 道1級:ろ過等による簡易な浄水操作を行うもの
 - " 2級:沈殿ろ過等による通常の浄水操作を行うもの
 - 3級:前処理等を伴う高度の浄水操作を行うもの
 - 3 水 産1級:ヤマメ、イワナ等貧腐水性水域の水産生物用並びに水産2級及び水産3級の水産生物用
 - " 2級: サケ科魚類及びアユ等貧腐水性水域の水産生物用及び水産3級の水産生物用
 - 3級:コイ、フナ等、β-中腐水性水域の水産生物用
 - 4 工業用水1級:沈殿等による通常の浄水操作を行うもの
 - 2級:薬品注入等による高度の浄水操作を行うもの
 - " 3級:特殊の浄水操作を行うもの
 - 5 環境保全:国民の日常生活(沿岸の遊歩等を含む。)において不快感を生じない限度

項			基準値	
類型	水生生物の生息状況の適応性	全亜鉛	ノニルフェノール	直鎖アルキルベン ゼンスルホン酸及 びその塩
生物 A	イワナ、サケマス等比較的低温 域を好む水生生物及びこれら の餌生物が生息する水域	0.03 mg/L以下	0.001 mg/L以下	0.03mg/L 以下
生物 特 A	生物 A の水域のうち、生物 A の 欄に掲げる水生生物の産卵場 (繁殖場)又は幼稚仔の生育場 として特に保全が必要な水域	0.03 mg/L以下	0.0006 mg/L以下	0.02mg/L 以下
生物 B	コイ、フナ等比較的高温域を好 む水生生物及びこれらの餌生 物が生息する水域	0.03 mg/L以下	0.002 mg/L以下	0.05mg/L 以下
生物 特 B	生物 A 又は生物 B の水域のうち、生物 B の欄に掲げる水生生物の産卵場 (繁殖場) 又は幼稚仔の生育場として特に保全が必要な水域	0.03 mg/L以下	0.002 mg/L 以下	0.04mg/L 以下
	測 定 方 法	規格 53 に定める方法	付表 11 に掲げる方法	付表 12 に掲げる方法
備考	1 基準値は年間平均値とす	る(湖沼、海域もこれに準ずる	,)	

◆ノニルフェノール(平成 24 年 8 月環境省告示第 127 号)並びに直鎖アルキルベンゼンスルホン酸及びその塩(平成 25 年 3 月環境省告示 第30号)が、新たに環境基準項目に追加された。

② 湖沼(天然湖沼及び貯水量が 1,000 万立方メートル以上あり、かつ、水の滞 留時間が4日間以上ある人工湖)

\	r e	+	•	WH:	<i>I</i> -+-	
項目		基		準	値	
類型	利用目的の 適応性	水素イオン濃度	化 学 的 酸素要求量	浮遊物質量	溶 存 酸 素 量	大腸菌群数
型\		(Hq)	(COD)	(SS)	(D0)	
АА	水道1級水産1級自然環境保全及びA以下の欄に掲げるもの	6.5以上 8.5以下	1mg/L以下	1mg/L以下	7.5mg/L以上	50 MPN/100mL 以下
A	水 道 2 、 3 級 水 産 2 級 水 産 2 級 水 浴 及びB以下の欄に掲げるもの	6.5以上 8.5以下	3mg/L以下	5mg/L以下	7.5mg/L以上	1,000 MPN/100mL 以下
В	水 産 3 級 工 業 用 水 及びCの欄に掲げるもの	6.5以上 8.5以下	5mg/L以下	15mg/L以下	5mg/L以上	
С	工業用水2級 環境保全	6.0以上 8.5以下	8mg/L以下	ごみ等の浮遊が認 められないこと。	2mg/L以上	
	測定方法	規格12.1 に定める方 法又はガラス電極を 用いる水質自動監視 測定装置によりこれ と同程度の計測結果 の得られる方法		付表 9 に掲げる方 法	規格32に定める方法 又は隔膜電極を用い る水質自動監視測定 装置によりこれと同 程度の計測結果の得 られる方法	定量法

(注) 1 自然環境保全:自然探勝等の環境保全

1

道1級: ろ過等による簡易な浄水操作を行うもの 2 水

〃 2、3級:沈殿ろ過等による通常の浄水操作、又は、前処理等を伴う高度の浄水操作を行うもの 産1級:ヒメマス等貧栄養湖型の水域の水産生物用並びに水産2級及び水産3級の水産生物用 2級:サケ科魚類及びアユ等貧栄養湖型の水域の水産生物用及び水産3級の水産生物用 3級:コイ、フナ等、富栄養湖型の水域の水産生物用

工業用水1級: 沈殿等による通常の浄水操作を行うもの 2級: 薬品注入等による高度の浄水操作、又は、特殊な浄水操作を行うもの

環 境 保 全:国民の日常生活(沿岸の遊歩等を含む。)において不快感を生じない限度

1

	利用目的の適応性	基準値		
	利用目的の適心性	全窒素	全燐 ^{りん}	
I	自然環境保全及びⅡ以下の欄に掲げるもの	0.1mg/L以下	0.005mg/L以下	
П	水道1、2、3級(特殊なものを除く。) 水 産 1 種 水 浴 及 び Ⅲ 以 下 の 欄 に 掲 げ る も の	0.2mg/L以下	0.01 mg/L以下	
Ш	水道3級(特殊なもの)及びIV以下の欄に掲げるもの	0.4mg/L以下	0.03 mg/L以下	
IV	水 産 2 種 及 び V の 欄 に 掲 げ る も の	0.6mg/L以下	0.05 mg/L以下	
V	水 産 3 種 工 業 用 水 農 業 用 水 環 境 保	1 mg/L以下	0.1 mg/L以下	
	測 定 方 法	規格 45.2、45.3、45.4 又は 45.6 に定める方法	規格 46.3 に定める方法	

備考

- 1 基準値は、年間平均値とする。
- 2 水域類型の指定は、湖沼植物プランクトンの著しい増殖を生ずるおそれがある湖沼について行うものとし、全室 素の項目の基準値は、全窒素が湖沼植物プランクトンの増殖の要因となる湖沼について適用する。
- 農業用水については、全燐りんの項目の基準値は適用しない。
- 自然環境保全:自然探勝等の環境保全
 - 道1級:ろ過等による簡易な浄水操作を行うもの 水
 - 2級:沈殿ろ過等による通常の浄水操作を行うもの
 - 3級:前処理等を伴う高度の浄水操作を行うもの(「特殊なもの」とは、臭気物質の除去が可能な特殊な浄水操作を 行うものをいう。)
 - 産1種:サケ科魚類及びアユ等の水産生物用並びに水産2種及び水産3種の水産生物用
 - 2種:ワカサギ等の水産生物用及び水産3級の水産生物用
 - 3種:コイ、フナ等の水産生物用
 - 環 境 保 全:国民の日常生活(沿岸の遊歩等を含む。)において不快感を生じない限度

ウ

項			基準値	
項目類型	水生生物の生息状況の適応性	全亜鉛	ノニルフェノール	直鎖アルキルベン ゼンスルホン酸及 びその塩
生物 A	イワナ、サケマス等比較的低温域を好む水生生物及びこれらの餌生物が生 息する水域	0.03 mg/L以下	0.001 mg/L以下	0.03mg/L 以下
生物 特 A	生物 A の水域のうち、生物 A の欄に掲げる水生生物の産卵場 (繁殖場) 又は 幼稚仔の生育場として特に保全が必要な水域	0.03 mg/L以下	0.0006 mg/L以下	0.02mg/L 以下
生物 B	コイ、フナ等比較的高温域を好む水生 生物及びこれらの餌生物が生息する 水域	0.03 mg/L以下	0.002 mg/L以下	0.05mg/L 以下
生物 特 B	生物 A 又は生物 B の水域のうち、生物 B の欄に掲げる水生生物の産卵場 (繁殖場) 又は幼稚仔の生育場として特に保全が必要な水域	0.03 mg/L以下	0.002 mg/L以下	0.04mg/L 以下
	測 定 方 法	規格53に定める方法	付表11に掲げる方法	付表 12 に掲げる方法
備考				

- 1 基準値は年間平均値とする。
- ◆ノニルフェノール(平成 24 年 8 月環境省告示第 127 号)並びに直鎖アルキルベンゼンスルホン酸及びその塩(平成 25 年 3 月環境省告 示第30号)が、新たに環境基準項目に追加された。

③ 海域

T

項			基	準	値	
項目類型	利用目的の 適 応 性	水素イオン濃度 (pH)	化 学 的 酸素要求量 (COD)	溶存酸素量 (DO)	大腸菌群数	n - ヘキサン 抽 出 物 質 (油分等)
A	水産1級水毎総浴自然環境保全及びB以下の欄に掲げるもの	7.8以上	2mg/L以下	7.5mg/L以上	1,000 MPN/100mL 以下	検出されないこと
В	水 産 2 級 工 業 用 水 及びCの欄に掲げるもの	7.8以上 8.3以下	3mg/L以下	5 mg/L以上		検出されないこと
С	環 境 保 全	7.0以上 8.3以下	8mg/L以下	2 mg/L以上		
	測 定 方 法	る方法又はガラス 電極を用いる水質 自動監視測定装置 によりこれと同程 度の計測結果の得	規格17に定める方法(ただし、B類型の工業用水及び水産2級のうちノリ養殖の利水点における測定方法はアルカリ性法)	方法又は隔膜電極 を用いる水質自動 監視測定装置によ りこれと同程度の	法	付表13に掲げる方 法

備考

- 1 水産1級のうち、生食用原料カキの養殖の利水点については、大腸菌群数 70MPN/100mL 以下とする。
- 2 アルカリ性法とは、次のものをいう。

試料 50m0 を正確に三角フラスコにとり、水酸化ナトリウム溶液(10w/v%)1mL を加え、次に過マンガン酸カリウム溶液(2mmol/L)10mL を正確に加えた後、沸騰した水浴中に正確に 20 分放置する。その後ヨウ化カリウム溶液(10w/v%)1mL とアジ化ナトリウム溶液(4w/v%)1 滴を加え、冷却後、硫酸(2+1)0.5mL を加えてよう素を遊離させて、それを力価の判明しているチオ硫酸ナトリウム溶液(10mmol/L)ででんぷん溶液を指示薬として滴定する。同時に試料の代わりに蒸留水を用い、同様に処理した空試験値を求め、次式により COD 値を計算する。

COD $(0_{2}\text{mg/L}) = 0.08 \times [(b) - (a)] \times fNa_{2}S_{2}O_{3} \times 1000 / 50$

- (a): チオ硫酸ナトリウム溶液 (10mmol/L) の滴定値 (mL)
- (b):蒸留水について行った空試験値 (mL)

 $fNa_2S_2O_3$: チオ硫酸ナトリウム溶液(10mmol/L)の力価

- (注) 1 自然環境保全:自然探勝等の環境保全
 - 2 水 産1級:マダイ、ブリ、ワカメ等の水産生物用並びに水産2級の水産生物用

" 2級:ボラ、ノリ等の水産生物用

3 環境保全:国民の日常生活(沿岸の遊歩等を含む。)において不快感を生じない限度

1

	利用目的の適応性	基注	準値
	利用目的20週心性	全窒素	全燐がん
I	自然環境保全及びⅡ以下の欄に掲げるもの (水産2種及び3種を除く。)	0.2mg/L以下	0.02mg/L以下
П	水 産 1 種 水浴及びⅢ以下の欄に掲げるもの (水産2種及び3種を除く。)	0.3mg/L以下	0.03mg/L以下
Ш	水産2種及びIVの欄に掲げるもの(水産3種を除く)	0.6mg/L以下	0.05mg/L以下
IV	水 産 3 種 工 業 用 水 生 物 生 息 環 境 保 全	1 mg/L以下	0.09mg/L以下
	測定方法	規格 45.4 又は 45.6 に定め る方法	規格 46.3 に定める方法

備考

- 1 基準値は、年間平均値とする。
- 2 水域類型の指定は、海洋植物プランクトンの著しい増殖を生ずるおそれがある海域について行うものとする。
- 生)1 自然環境保全:自然探勝等の環境保全
 - 2 水 産 1 種: 底生魚介類を含め多様な水産生物がバランスよく、かつ、安定して漁獲される
 - 水 産 2 種:一部の底生魚介類を除き、魚類を中心とした水産生物が多穫される
 - 水 産 3 種:汚濁に強い特定の水産生物が主に漁獲される
 - 3 生物生息環境保全:年間を通して底生生物が生息できる限度

ウ

項目		基準値			
類型型	水生生物の生息状況の適応性	全亜鉛	ノニルフェノール	直鎖アルキルベン ゼンスルホン酸及 びその塩	
生物 A	水生生物の生息する水域	0.02 mg/L以下	0.001 mg/L以下	0.01mg/L 以下	
生物特 A	生物 A の水域のうち、水生生物の産卵場(繁殖場)又は幼稚仔の生育場として特に保全が必要な水域	0.01 mg/L以下	0.0007 mg/L以下	0.006mg/L 以下	
測	定 方 法	規格 53 に定める方法	付表11に掲げる方法	付表 12 に掲げる方法	

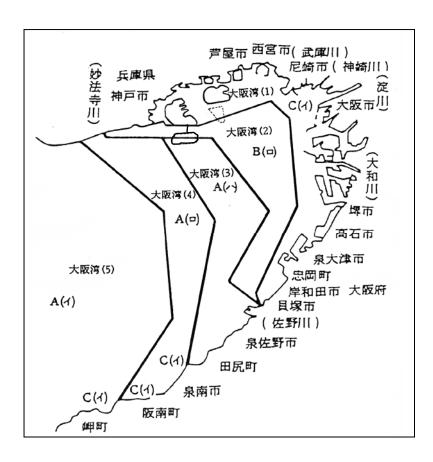
備考

¹ 基準値は年間平均値とする。

[◆]ノニルフェノール(平成 24 年 8 月環境省告示第 127 号) 並びに直鎖アルキルベンゼンスルホン酸及びその塩(平成 25 年 3 月環境省告示第 30 号)が、新たに環境基準項目に追加された。

(3) 環境基準に係る水域類型の指定(全窒素・全燐・水生生物の保全に係る項目以外)

	水域の範囲	水域類型	達成期間	指定年月、告示等
武庫川中流	(三田市大橋から仁川合流点まで)	В	イ	昭和 45 年 9 月 1 日 閣議決定
明石川上流	(伊川合流点より上流)	В	イ	昭和 48 年 9 月 4 日
明石川下流	(伊川合流点より下流)	С	口	兵庫県告示第 1415 号
志 染 川	(呑吐ダム上流端から上流の志染川 本流)	В	П	
伊 川	(伊川と明石川との合流点から上流 の伊川本流)	С	D	昭和 60 年 3 月 22 日 兵庫県告示第 451 号
福田川	(福田川本流全域)	Е	ロ	
千苅水源池	(千苅ダムのえん堤及びこれに接続 する陸岸に囲まれた水域)	A	イ	昭和 53 年 3 月 24 日 兵庫県告示第 652 号
兵庫運河	(新川運河を含む)	С	口	昭和 46 年 12 月 28 日
大阪湾(1)	(別記1の水域)	С	イ	環境庁告示第60号
大阪湾(2)	(別記2の水域) 下	В	口	
大阪湾(3)	(別記2の水域) (別記3の水域) (別記4の水域) 照	Α	ハ	改正
大阪湾(4)	(別記4の水域) 照	Α	口	平成 14 年 3 月 29 日
大阪湾(5)	(別記5の水域)	Α	イ	環境省告示第 33 号


(注) 達成期間の分類は、次のとおりとする。

(1) 「イ」:直ちに達成

(2) 「ロ」:5年以内で可及的すみやかに達成

(3) 「ハ」:5年を越える期間で可及的すみや

かに達成

(別記)

- 1 兵庫県神戸港和田岬灯台と同港第一防波堤西端を結ぶ線、同防波堤、同防波堤東端と同港第一南防波堤北端を結ぶ線、同防波堤、同防波堤南端と同県ポートアイランド埋立地南端を結ぶ線、同港第八防波堤、同防波堤東端と同地点から東北東方9,200mの地点(北緯34度40分20秒、東経135度21分11秒)を結ぶ線、同地点と同地点から南東1,600mの地点を結ぶ線、同地点と同地点から南方12,200mの地点(北緯34度33分12秒、東経135度22分52秒)を結ぶ線、同地点と大阪府阪南港阪南四区北防波堤基部から同防波堤に沿って300mの地点を結ぶ線、同防波堤、同港阪南六区埋立地南端と同港阪南五区埋立地西端を結ぶ線及び陸岸により囲まれた海域であって、兵庫運河(新川運河を含む。)に係る部分を除いたもの(大阪湾(1))
- 2 兵庫県神戸市妙法寺川河口右岸、同地点と同地点から南500mの地点を結ぶ線、同地点と同地点から東11,500mの地点を結ぶ線、同地点と同地点から南東方12,000mの地点(北緯34度32分42秒、東経135度20分34秒)を結ぶ線、同地点と同地点から南南西9,300mの地点を結ぶ線および同地点と大阪府貝塚市近木川河口左岸を結ぶ線及び陸岸に囲まれた海域であって、兵庫運河(新川運河を含む。)および大阪湾(1)に係る部分を除いたもの(大阪湾(2))
- 3 兵庫県神戸市妙法寺川河口右岸、同地点と同地点から南500mの地点を結ぶ線、同地点と同地点から東5,700mの地点を結ぶ線、同地点と同地点から南東方12,600mの地点(北緯34度32分54秒、東経135度16分44秒)を結ぶ線、同地点と大阪府阪南市男里川河口左岸を結ぶ線及び陸岸により囲まれた海域であって、兵庫運河(新川運河を含む。)、大阪湾(1)および同湾(2)に係る部分を除いたもの(大阪湾(3))
- 4 兵庫県神戸市塩屋川河口右岸、同地点と同地点から南東方 14,000mの地点(北緯 34 度 33 分 6 秒、東経 135 度 12 分 0 秒)を結ぶ線、同地点と同地点から南東 11,500mの地点(北緯 34 度 27 分 0 秒、東経 135 度 13 分 22 秒)を結ぶ線、同地点と大阪府泉南郡岬町淡輪 5893 番地の 2 の地点を結ぶ線および陸岸により囲まれた海域であって、兵庫運河(新川運河を含む。)、大阪湾(1)、同湾(2)、同湾(3)、尾崎港および淡輪港に係る部分を除いたもの(大阪湾(4))
- 5 和歌山県和歌山市田倉崎と兵庫県淡路島生石鼻を結ぶ線、同島松帆崎と兵庫県明石市朝霧川河口左岸を結ぶ 線及び陸岸により囲まれた海域であって、兵庫運河 (新川運河を含む。)、大阪湾(1)、同湾(2)、同湾(3)、同湾 (4)、尾崎港、淡輪港、洲本港(1)、同港(2)および津名港に係る部分を除いたもの(大阪湾(5))

(4) 千苅水源池における全燐に係る水域類型の指定

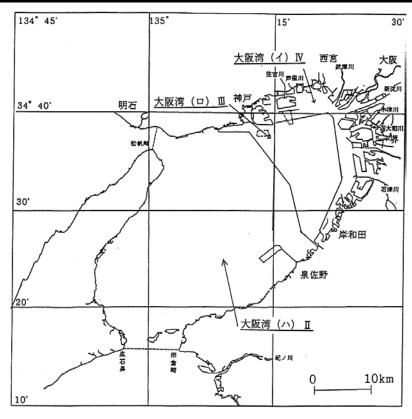
(指定:平成14年4月30日兵庫県告示第689号)

千苅水源池における富栄養化の進行に伴い、植物プランクトンの増殖による利水障害が見られることから、総合的な水質保全対策の推進を図るため、平成14年4月30日付で全燐に係る環境基準が設定された。段階的に暫定目標(平成27年度:全燐0.019mg/L)を達成しつつ、環境基準の可及的速やかな達成に努めることとなっている。

公共田水域が該当する	水質汚濁に係る環	環境基準の水域類型の指定
	// H (7/m)/(18/4)/	8 19 75 15 V / N 19 15 16 17 V / T I I I

水域	該当類型	達成期間	基準値		暫定目標 (平成 27 年度)	
千苅水源池 (別記の水域)	湖沼Ⅱ (全窒素の 項目の基準 値を除く)	段階的に暫定目標を達成し つつ、環境基準の可及的速 やかな達成に努める。	全燐 0.01m	ng/L以下	全燐	0.019mg/L

(別記) 千苅ダムのえん堤及びこれに接続する陸岸に囲まれた水域


(5) 大阪湾における全窒素、全燐に係る水域類型の指定

(指定:平成7年2月28日環境庁告示第5号、改正:平成14年3月15日環境省告示第19号) 海域の富栄養化防止の観点から、平成5年8月27日付けで海域の全窒素及び全燐に係る環境基準が設定された。この環境基準は、水域の利水目的に対応して複数の類型が設けられており、個々の水域にいずれかの類型をあてはめることによって、当該水域の具体的な水質目標が示されることとなっている。この類型指定は、政令で都道府県知事に委任された水域以外の水域については、環境大臣がおこなうこととされている。

環境大臣が類型指定を行うこととされている水域のうち、特に富栄養化の著しい東京湾、大阪湾、伊勢湾並びに播磨灘~響灘及び周防灘の瀬戸内海について、水域類型が指定されている。(なお、環境基準の達成が明らかに困難と予測される類型について、段階的に達成すべき暫定目標として大阪湾では海域 II 類型の全窒素のみに平成 16 年度をめどに設定されていたが、平成 17 年度以降は環境基準の維持・達成を図ることとなった。平成 17 年 1 月 28 日中央環境審議会水環境部会報告より)

公共用水域が該当する全窒素、全燐に係る水質環境基準の水域類型の指定(大阪湾のみ抜粋)

水域	該当 類型	基準値	達成期間	暫定目標 (平成 16 年度)
大阪湾(イ)	海域IV	全窒素 1mg/L 以下 全燐 0.09mg/L 以下	直ちに達成する。	
大阪湾 (ロ)	海域Ⅲ	全窒素 0.6mg/L以下 全燐 0.05mg/L以下	直ちに達成する。	
大阪湾(ハ)	海域Ⅱ	全窒素 0.3mg/L以下 全燐 0.03mg/L以下	段階的に暫定目標を達成 しつつ、環境基準の可及的 速やかな達成に努める。	全窒素 0.34mg/L

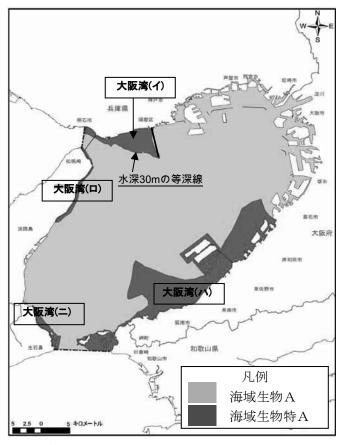
(別記)

- 1 兵庫県神戸港和田岬灯台と同港第一防波堤西端を結ぶ線、同防波堤、同防波堤東端と同港第一南防波堤北端を結ぶ線、同防波堤、同防波堤南端と同県ポートアイランド埋立地南端を結ぶ線、同港第八防波堤、同防波堤東端と同地点から東北東方9,200mの地点(北緯34度40分20秒、東経135度21分11秒)を結ぶ線、同地点と同地点から南東1,600mの地点を結ぶ線、同地点と同地点から南方12,200mの地点(北緯34度33分12秒、東経135度22分52秒)の地点を結ぶ線、同地点と大阪府阪南港阪南四区北防波堤基部から同防波堤に沿って300mの地点を結ぶ線、同防波堤、同港阪南六区埋立地南端と同港阪南五区埋立地西端を結ぶ線及び陸岸によって囲まれた海域(大阪湾(イ))
- 2 兵庫県神戸市妙法寺川河口右岸、同地点と同地点から南500mの地点を結ぶ線、同地点と同地点から東5,700mの地点を結ぶ線、同地点と同地点から南東方12,600mの地点(北緯34度32分54秒、東経135度16分44秒)を結ぶ線、同地点と同地点から南南東方9,000mの地点(北緯34度28分4秒、東経135度18分1秒)を結ぶ線、同地点と大阪府貝塚市近木川河口左岸を結ぶ線及び陸岸に囲まれた海域であって、大阪湾(イ)に係る部分を除いたもの(大阪湾(ロ))
- 3 和歌山県和歌山市田倉崎と兵庫県淡路島生石鼻を結ぶ線、同島松帆崎と兵庫県明石市朝霧川河口左岸を結ぶ 線および陸岸により囲まれた海域であって、大阪湾(イ)及び大阪湾(ロ)に係る部分を除いたもの(大阪湾(ハ))

(6) 大阪湾における水生生物の保全に係る水質環境基準の水域類型の指定

(指定:平成21年3月環境省告示第15号、改正:平成25年6月5日環境省告示第58号)

中央環境審議会「水生生物の保全に係る水質環境基準の水域類型の指定について」(諮問 平成 16 年 8 月 27 日)により、公共用水域(河川、湖沼及び海域)毎に水生生物の生息状況の適応性に応じた水域類型について、個々の水域に対して水域類型を指定している。当該環境基準の類型指定(海域)の指定については、これまで、国が類型指定を行う海域のうち 2 海域(東京湾、伊勢湾)について、類型指定を行っており、平成 25 年 6 月 5 日の改正により、大阪湾についても水域類型の指定がなされた。


海域が該当する水質汚濁に係る環境基準の水域類型の指定 (大阪湾のみ抜粋)

政令に基づく名称	水 域	該当類型	達成期間	指定日
和歌山市田倉埼か	大阪湾(全域。ただし、大阪	海域生物	直ちに達成	平成 25 年 6 月 5 日
ら兵庫県淡路島生	湾(イ)、大阪湾(ロ)、大	A		
石鼻まで引いた	阪湾(ハ)及び大阪湾(二)			
線、同島松帆埼か	に係る部分を除く。)			
ら明石市朝霧川河	大阪湾(イ)(別記1の水域)	海域生物	直ちに達成	平成 25 年 6 月 5 日
口左岸まで引いた		特A		
線及び陸岸により	大阪湾(ロ)(別記2の水域)	海域生物	直ちに達成	平成 25 年 6 月 5 日
囲まれた海域(大		特A		
阪湾)	大阪湾(ハ)(別記3の水域)	海域生物	直ちに達成	平成 25 年 6 月 5 日
		特A		
	大阪湾(二)(別記4の水域)	海域生物	直ちに達成	平成 25 年 6 月 5 日
		特A		

(別記)

- 1 明石市朝霧川河口左岸と同地点から南方 1290m の地点(北緯 34 度 37 分 57 秒、東経 135 度 0 分 36 秒)を結ぶ線、垂水漁港西防波堤先端と同港東防波堤(Ⅱ) 先端を結ぶ線、塩屋漁港西防波堤先端と同港南防波堤先端を結ぶ線、須磨浦港西防波堤先端と同港東防波堤先端を結ぶ線、須磨港西防波堤先端と同港南防波堤西端を結ぶ線、同防波堤、同防波堤東端と同港東防波堤を結ぶ線、神戸市長田区駒ヶ林南町 1-5 地先の陸地の地点(北緯 34 度 38 分 36 秒、東経 135 度 8 分 35 秒)と同地点から南方 6050m の地点(北緯 34 度 35 分 23 秒、東経 135 度 9 分 20 秒)
 - を結ぶ線、水深 30m の等深線及び陸岸により囲まれた 海域 (大阪湾(イ))
- 2 淡路島松帆崎と同地点から北方 180m の地点(北緯 34 度 36 分 31 秒、東経 135 度 0 分 22 秒)を結ぶ線、 淡路市岩屋長浜北東端の防波堤(西)先端(北緯 34 度 35 分52 秒、東経135 度0 分44 秒)と岩屋港防波堤 (東) 先端を結ぶ線、同防波堤、同港防波堤(中)、同 港防波堤(1)、岩屋漁港2号防波堤先端と同港防波 堤(北)東端を結ぶ線、同防波堤、同防波堤西端と同 港西防波堤東端を結ぶ線、同防波堤、同防波堤西端と 長谷川河口右岸を結ぶ線、浦港北防波堤東端(北緯34 度 32 分 35 秒、東経 134 度 59 分 45 秒)と同港南防 波堤先端を結ぶ線、仮屋漁港(森地区)南防波堤先端と 同港東防波堤南端を結ぶ線、同防波堤、同防波堤北端 と同港北防波堤先端を結ぶ線、仮屋漁港(仮屋地区)南 防波堤先端と同港東防波堤南端を結ぶ線、同防波堤、 同防波堤北端と同港中防波堤先端を結ぶ線、釜口漁港 1 号防波堤先端と同港 3 号防波堤先端を結ぶ線、淡路 市佐野地先の陸地の地点(北緯34度28分60秒、東 経 134 度 57 分 14 秒) と同地点から東方 690m の地点 (北緯34度28分56秒、東経134度57分40秒) を結ぶ線、水深 30m の等深線及び陸岸により囲まれた 海域(ただし、交流の翼港浮桟橋(A)先端と同港防波 堤(東)先端を結ぶ線及び陸岸により囲まれた海域を 除く。)(大阪湾(ロ))

(別記3及び4については省略)

大阪湾における生物A、生物特A類型の類型指定図

(7) 要監視項目

① 人の健康の保護に関する要監視項目

項目	指 針 値
クロロホルム	0.06 mg/L以下
トランスー1,2ージクロロエチレン	0.04 mg/L以下
1,2-ジクロロプロパン	0.06 mg/L以下
pージクロロベンゼン	0.2 mg/L以下
イソキサチオン	0.008 mg/L以下
ダイアジノン	0.005 mg/L以下
フェニトロチオン (MEP)	0.003 mg/L以下
イソプロチオラン	0.04 mg/L以下
オキシン銅(有機銅)	0.04 mg/L以下
クロロタロニル (TPN)	0.05 mg/L以下
プロピザミド	0.008 mg/L以下
EPN	0.006 mg/L以下
ジクロルボス (DDVP)	0.008 mg/L以下
フェノブカルブ (BPMC)	0.03 mg/L以下
イプロベンホス (IBP)	0.008 mg/L以下
クロルニトロフェン (CNP)	設定されていない
トルエン	0.6 mg/L以下
キシレン	0.4 mg/L以下
フタル酸ジエチルヘキシル	0.06 mg/L以下
ニッケル	設定されていない
モリブデン	0.07 mg/L以下
アンチモン	0.02 mg/L以下
塩化ビニルモノマー	0.002 mg/L以下
エピクロロヒドリン	0.0004 mg/L以下
全マンガン	0.2 mg/L以下
ウラン	0.002 mg/L以下

- 平成5年3月8日付 環水管第21号 環境庁水質保全局長通達 平成11年2月22日付環水企第58号及び環水管第49号により、クロロタロニル(TPN)、 ◆ 平成11年2月22日付環水企第58号及び環水管第49号により、クロロタロニル(TPN)、ジクロルボス(DDVP)、フェノブカルブ(BPMC)は、指針値が変更され、ニッケル、アンチモンは指針値が削除された。また、ほう素、ふっ素は環境基準の人の健康の保護に関する項目に追加されたため、要監視項目から削除された。
 ◆ 平成16年3月31日付 環水企第040331003号及び環水土第040331005号により、塩化ビニルモノマー、エピクロロヒドリン、1,4-ジオキサン、全マンガン、ウランが追加され、p-ジクロロベンゼン、アンチモンの指針値が改訂された。
 ◆ 平成21年11月30日付 環水大水発091130004号及び環水大土発第091130005号により、1,4-ジオキサンは環境基準の人の健康の保護に関する項目に追加されたため、要監視項目から削除された。

② 水生生物の保全に関する要監視項目

ア. 河川及び湖沼

類型項目	生物A	生物特A	生物B	生物特B
クロロホルム	0.7 mg/L以下	0.006 mg/L以下	3 mg/L以下	3 mg/L以下
フェノール	0.05 mg/L以下	0.01 mg/L以下	0.08 mg/L以下	0.01 mg/L以下
ホルムアルデヒド	1 mg/L以下	1 mg/L以下	1 mg/L以下	1 mg/L以下
4-t-オクチルフェノール	0.001 mg/L以下	0.0007mg/L以下	0.004 mg/L以下	0.003 mg/L以下
アニリン	0.02 mg/L以下	0.02 mg/L以下	0.02 mg/L以下	0.02 mg/L以下
2, 4-ジクロロフェノール	0.03 mg/L以下	0.003 mg/L以下	0.03 mg/L以下	0.02 mg/L以下

イ.海域

類型項目	生物A	生物特A
クロロホルム	0.8 mg/L以下	0.8 mg/L以下
フェノール	2 mg/L以下	0.2 mg/L以下
ホルムアルデヒド	0.3 mg/L以下	0.03 mg/L以下
4-t-オクチルフェノール	0.0009 mg/L 以下	0.0004 mg/L 以下
アニリン	0.1 mg/L 以下	0.1 mg/L 以下
2, 4-ジクロロフェノール	0.02 mg/L 以下	0.01 mg/L 以下

[◆] 平成25年3月環境省告示第30号により、4-t-オクチルフェノール、アニリン及び2,4-ジクロロフェノールが要監視項目に追加された。

2. 地下水の水質汚濁に係る環境基準について(平成9年3月13日環境庁告示第10号)

(改正:平10環告23、平11環告16、平20環告41、平21環告79、平23環告95、平24環告85、平26環告40)

環境基本法(平成 5 年法律第 91 号)第 16 条の規定に基づく水質汚濁に係る環境上の条件のうち、地下水の水質汚 濁に係る環境基準について次のとおり告示する。

環境基本法第16条第1項による地下水の水質汚濁に係る環境上の条件につき人の健康を保護する上で維持すること が望ましい基準(以下「環境基準」という。)及びその達成期間等は、次のとおりとする。

第1

環境基準は、すべての地下水につき、別表の項目の欄に掲げる項目ごとに、同表の基準値の欄に掲げるとおりと する。

地下水の水質の測定方法等 第 2

環境基準の達成状況を調査するため、地下水の水質の測定を行う場合には、次の事項に留意することとする。

- (1) 測定方法は、別表の測定方法の欄に掲げるとおりとする。
- (2) 測定の実施は、別表の項目の欄に掲げる項目ごとに、地下水の流動状況等を勘案して、当該項目に係る地下水 の水質汚濁の状況を的確に把握できると認められる場所において行うものとする。

第3 環境基準の達成期間

環境基準は、設定後直ちに達成され、維持されるように努めるものとする(ただし、汚染が専ら自然的原因によ ることが明らかであると認められる場合を除く。)。

第4 環境基準の見直し

- 環境基準は、次により、適宜改定することとする。 (1) 科学的な判断の向上に伴う基準値の変更及び環境上の条件となる項目の追加等
- (2) 水質汚濁の状況、水質汚濁源の事情等の変化に伴う環境上の条件となる項目の追加等

別表

項目	基 準 値	測 定 方 法
カドミウム	0.003mg/L 以下	日本工業規格(以下「規格」という。)K0102 の 55.2、55.3 又は 55.4 に定める方 法
全シアン	検出されないこと。	規格K0102 の 38. 1. 2 及び 38. 2 に定める方法、規格K0102 の 38. 1. 2 及び 38. 3 に 定める方法又は規格K0102 の 38. 1. 2 及び 38. 5 に定める方法
<u></u> 鉛	0.01mg/L 以下	規格K0102 の 54 に定める方法
六価クロム	0.05mg/L 以下	規格K0102の65.2に定める方法(ただし、規格K0102の65.2.6に定める方法により塩分の濃度の高い試料を測定する場合にあっては、規格K0170-7の7のa) 又はb)に定める操作を行うものとする。)
砒素	0.01mg/L 以下	規格K0102 の 61. 2、61. 3 又は 61. 4 に定める方法
総水銀	0.0005mg/L以下	昭和 46 年 12 月環境庁告示第 59 号(水質汚濁に係る環境基準について)(以下「公 共用水域告示」という。)付表 1 に掲げる方法
アルキル水銀	検出されないこと。	公共用水域告示付表2に掲げる方法
РСВ	検出されないこと。	公共用水域告示付表3に掲げる方法
ジクロロメタン	0.02mg/L 以下	規格K0125の5.1、5.2又は5.3.2に定める方法
四塩化炭素	0.002mg/L以下	規格K0125の5.1、5.2、5.3.1、5.4.1又は5.5に定める方法
塩化ビニルモノマー	0.002mg/L以下	付表に掲げる方法
1, 2-ジクロロエタン	0.004mg/L以下	規格K0125の5.1、5.2、5.3.1又は5.3.2に定める方法
1, 1-ジクロロエチレン	0.1mg/L 以下	規格K0125の5.1、5.2又は5.3.2に定める方法
1, 2-ジクロロエチレン	0.04mg/L 以下	シス体にあっては規格 K0125 の 5. 1、5. 2 又は 5. 3. 2 に定める方法、トランス体に あっては、規格 K0125 の 5. 1、5. 2 又は 5. 3. 1 に定める方法
1, 1, 1-トリクロロエタン	1mg/L 以下	規格K0125 の 5. 1、5. 2、5. 3. 1、5. 4. 1 又は 5. 5 に定める方法
1, 1, 2-トリクロロエタン	0.006mg/L以下	規格K0125 の 5. 1、5. 2、5. 3. 1、5. 4. 1 又は 5. 5 に定める方法
トリクロロエチレン	0.03mg/L 以下	規格K0125の5.1、5.2、5.3.1、5.4.1又は5.5に定める方法
テトラクロロエチレン	0.01mg/L 以下	規格K0125 の 5. 1、5. 2、5. 3. 1、5. 4. 1 又は 5. 5 に定める方法
1, 3-ジクロロプロペン	0.002mg/L以下	規格K0125の5.1、5.2又は5.3.1に定める方法
チウラム	0.006mg/L以下	公共用水域告示付表4に掲げる方法
シマジン	0.003mg/L以下	公共用水域告示付表5の第1又は第2に掲げる方法
チオベンカルブ	0.02mg/L 以下	公共用水域告示付表5の第1又は第2に掲げる方法
ベンゼン	0.01mg/L 以下	規格K0125 の 5.1、5.2 又は 5.3.2 に定める方法
セレン	0.01mg/L 以下	規格K0102の67.2、67.3又は67.4に定める方法
硝酸性窒素及び亜硝酸性窒素	10mg/L以下	硝酸性窒素にあっては規格K0102の43.2.1、43.2.3、43.2.5又は43.2.6に定める方法、亜硝酸性窒素にあっては規格K0102の43.1に定める方法
ふっ素	0.8mg/L 以下	規格K0102 の 34.1 若しくは 34.4 に定める方法又は規格K0102 の 34.1c) (注(6) 第三文を除く。) に定める方法 (懸濁物質及びイオンクロマトグラフ法で妨害となる物質が共存しない場合にあっては、これを省略することができる。) 及び公共用水域告示付表 6 に掲げる方法
ほう素	1mg/L 以下	規格K0102 の 47.1、47.3 又は 47.4 に定める方法
1, 4-ジオキサン	0.05mg/L 以下	公共用水域告示付表7に掲げる方法

- 1 基準値は年間平均値とする。ただし、全シアンに係る基準値については、最高値とする。
- 2 「検出されないこと」とは、測定方法の欄に掲げる方法により測定した場合において、その結果が当該方法の定量限界を下回ることをいう。
- 3 硝酸性窒素及び亜硝酸性窒素の濃度は、規格K0102 の 43.2.1、43.2.3、43.2.5 又は 43.2.6 により測定された硝酸イオンの濃度に換算係数 0.2259 を乗じたものと規格K0102 の 43.1 により測定された亜硝酸イオンの濃度に換算係数 0.3045 を乗じたものの和とする。

3. 土壌の汚染に係る環境基準について(平成3年8月23日環境庁告示第46号)

(改正:平5環告19、平6環告5、平6環告25、平7環告19、平10環告21、平13環告16、平20環告46、平22環告37、平26環告44)

環境基本法(平成5年法律第91号)第16条第1項による土壌の汚染に係る環境上の条件につき、人の健康を保護し、及び生活環境を保全するうえで維持することが望ましい基準(以下、「環境基準」という。)並びにその達成期間等は、次のとおりとする。

第1 環境基準

- 1 環境基準は、別表の項目の欄に掲げる項目ごとに、同表の環境上の条件の欄に掲げるとおりとする。
- 2 1の環境基準は、別表の項目の欄に掲げる項目ごとに、当該項目に係る土壌の汚染の状況を的確に把握することができると認められる場所において、同表の測定方法の欄に掲げる方法により測定した場合における測定値によるものとする。
- 3 1の環境基準は、汚染がもっぱら自然的原因によることが明らかであると認められる場所及び原材料の堆積場、廃棄物の埋立地その他の別表の項目の欄に掲げる項目に係る物質の利用又は処分を目的として現にこれらを集積している施設に係る土壌については、適用しない。

第2 環境基準の達成期間等

環境基準に適合しない土壌については、汚染の程度や広がり、影響の態様等に応じて可及的速やかにその達成維持に努めるものとする。

なお、環境基準を早期に達成することが見込まれない場合にあっては、土壌の汚染に起因する環境影響を防止するために必要な措置を講ずるものとする。

別表	and the Lander Lil	Nut de L. M
項目	環境上の条件	測定方法
カドミウム	検液1Lにつき 0.01mg 以下であり、か つ、農用地においては、米1kg につき 0.4 mg以下であること。	環境上の条件のうち、検液中濃度に係るものにあっては、日本工業規格K0102(以下「規格」という。)55に定める方法、農用地に係るものにあっては、昭和46年6月農林省令第47号に定める方法
全シアン	検液中に検出されないこと。	規格 38 に定める方法(規格 38.1.1 に定める方法を除く。)
有機燐(りん)	検液中に検出されないこと。	昭和49年9月環境庁告示第64号付表1に掲げる方法又は規格 31.1 に定める方法のうちガスクロマトグラフ法以外のもの (メチルジメトンにあっては、昭和49年9月環境庁告示第64 号付表2に掲げる方法)
鉛	検液1Lにつき 0.01mg 以下であること。	規格 54 に定める方法
六価クロム	検液1Lにつき 0.05mg 以下であること。	規格 65.2 に定める方法 (ただし、規格 65.2.6 に定める方法により塩分の濃度の高い試料を測定する場合にあっては、日本工業規格 K0170-7 の 7 の a) 又は b) に定める操作を行うものとする。)
砒(ひ)素	つ、農用地(田に限る。)においては、土 壌1kg につき 15mg 未満であること。	環境上の条件のうち、検液中濃度に係るものにあっては、規格 61に定める方法、農用地に係るものにあっては、昭和50年4 月総理府令第31号に定める方法
総水銀	検液1Lにつき 0.0005mg 以下であること。	昭和 46 年 12 月環境庁告示第 59 号付表 1 に掲げる方法
アルキル水銀	検液中に検出されないこと。	昭和46年12月環境庁告示第59号付表2及び昭和49年9月環境庁告示第64号付表3に掲げる方法
PCB	検液中に検出されないこと。	昭和 46 年 12 月環境庁告示第 59 号付表 3 に掲げる方法
銅	,	昭和 47 年 10 月総理府令第 66 号に定める方法
ジクロロメタン	検液 1 L につき 0.02mg 以下であること。	日本工業規格K0125 の 5.1、5.2 又は 5.3.2 に定める方法
四塩化炭素	検液1Lにつき 0.002mg 以下であること。	日本工業規格K0125 の 5.1、5.2、5.3.1、5.4.1 又は 5.5 に定める方法
タン	検液1Lにつき 0.004mg 以下であること。	日本工業規格K0125 の 5.1、5.2、5.3.1 又は 5.3.2 に定める 方法
1, 1-ジクロロエ チレン	候似1Lにつさ U.Img 以下であること。	日本工業規格K0125の5.1、5.2又は5.3.2に定める方法
シスー1, 2 - ジク ロロエチレン	検液1Lにつき 0.04mg 以下であること。	日本工業規格K0125の5.1、5.2又は5.3.2に定める方法
1, 1, 1-トリク ロロエタン	検液1Lにつき1mg 以下であること。	日本工業規格K0125 の 5.1、5.2、5.3.1、5.4.1 又は 5.5 に定める方法
1, 1, 2-トリク ロロエタン	検液1Lにつき 0.006mg 以下であること。	日本工業規格K0125の5.1、5.2、5.3.1、5.4.1又は5.5に定める方法
トリクロロエチレン	検液1Lにつき 0.03mg 以下であること。	日本工業規格K0125 の 5.1、5.2、5.3.1、5.4.1 又は 5.5 に定める方法
テトラクロロエチレ ン	検液1Lにつき 0.01mg 以下であること。	日本工業規格K0125の5.1、5.2、5.3.1、5.4.1又は5.5に定める方法
1, 3-ジクロロプ ロペン	検液1Lにつき 0.002mg 以下であるこ と。	日本工業規格K0125の5.1、5.2又は5.3.1に定める方法
チウラム	検液1Lにつき 0.006mg 以下であること。	昭和 46 年 12 月環境庁告示第 59 号付表 4 に掲げる方法
シマジン	検液1Lにつき 0.003mg 以下であること。	昭和 46年 12月環境庁告示第 59号付表 5の第1又は第2に掲げる方法
チオベンカルブ	検液1Lにつき 0.02mg 以下であること。	昭和46年12月環境庁告示第59号付表5の第1又は第2に掲げる方法
ベンゼン	検液1 Lにつき 0.01mg 以下であること。	日本工業規格 K 0125 の 5.1、5.2 又は 5.3.2 に定める方法
セレン ふっ素	検液1Lにつき 0.01mg 以下であること。 検液1Lにつき 0.8mg 以下であること。	規格 67.2、67.3 又は 67.4 に定める方法 規格 34.1 若しくは 34.4 に定める方法又は規格 34.1c)(注(6) 第3文を除く。)に定める方法(懸濁物質及びイオンクロマト グラフ法で妨害となる物質が共存しない場合にあっては、これ を省略することができる。)及び昭和 46 年 12 月環境庁告示第 59 号付表 6 に掲げる方法
ほう素		規格 47.1、47.3 又は 47.4 に定める方法
(は) ポーニー	MINITURE YOUR TIME WILL COUNTY OF CO	7961H 11.15 11.0 /CIO 11.1 (C/L/V/ 0//) 1/A

- 環境上の条件のうち検液中濃度に係るものにあっては付表に定める方法により検液を作成し、これを用いて測定を行 うものとする。
- カドミウム、鉛、六価クロム、砒素、総水銀、セレン、ふっ素及びほう素に係る環境上の条件のうち検液中濃度に係る値にあっては、汚染土壌が地下水面から離れており、かつ、原状において当該地下水中のこれらの物質の濃度がそれ ぞれ地下水1Lにつき0.01mg、0.01mg、0.05mg、0.01mg、0.0005mg、0.01mg、0.8mg及び1mgを超えていない場合には、 それぞれ検液 1 L につき 0.03mg、0.03mg、0.15mg、0.03mg、0.0015mg、0.03mg、2.4mg 及び 3mg とする。 「検液中に検出されないこと」とは、測定方法の欄に掲げる方法により測定した場合において、その結果が当該方法
- の定量限界を下回ることをいう。 有機燐とは、パラチオン、メチルパラチオン、メチルジメトン及びEPNをいう。

付表

4. ダイオキシン類による大気の汚染、水質の汚濁(水底の底質の汚濁を含む。)及び土壌の汚染 に係る環境基準について(平成11年12月27日環境庁告示第68号)

(改正 平成 14 環告 46、平成 21 環告 11)

ダイオキシン類対策特別措置法(平成11年法律第105号)第7条の規定に基づくダイオキシン類による大気の汚染、水質の汚濁(水底の底質の汚染を含む。)及び土壌の汚染に係る環境上の条件につき人の健康を保護する上で維持されることが望ましい基準(以下「環境基準」という。)は次のとおりとする。

第1 環境基準

- 1 環境基準は、別表の媒体の項に掲げる媒体ごとに、同表の基準値の項に掲げるとおりとする。
- 2 1の環境基準の達成状況を調査するため測定を行う場合には、別表の媒体の項に掲げる媒体ごとに、 ダイオキシン類による汚染又は汚濁の状況を的確に把握することができる地点において、同表の測定 方法の項に掲げる方法により行うものとする。
- 3 大気の汚染に係る環境基準は、工業専用地域、車道その他一般公衆が通常生活していない地域又は 場所については適用しない。
- 4 水質の汚濁(水底の底質の汚染を除く。)に係る環境基準は、公共用水域及び地下水について適用する。
- 5 水底の底質の汚染に係る環境基準は、公共用水域の水底の底質について適用する。
- 6 土壌の汚染に係る環境基準は、廃棄物の埋立地その他の場所であって、外部から適切に区別されている施設に係る土壌については適用しない。

第2 達成期間等

- 1 環境基準が達成されていない地域又は水域にあっては、可及的速やかに達成されるように努めることとする。
- 2 環境基準が現に達成されている地域若しくは水域又は環境基準が達成された地域若しくは水域に あっては、その維持に努めることとする。
- 3 土壌の汚染に係る環境基準が早期に達成されることが見込まれない場合にあっては、必要な措置を講じ、土壌の汚染に起因する環境影響を防止することとする。

第3 環境基準の見直し

ダイオキシン類に関する科学的な知見が向上した場合、基準値を適宜見直すこととする。

別表

<i>//13</i> X		
媒体	基準値	測 定 方 法
大 気	0.6pg-TEQ /	ポリウレタンフォームを装着した採取管をろ紙後段に取り付けたエ
	m³以下	アサンプラーにより採取した試料を高分解能ガスクロマトグラフ質
		量分析計により測定する方法
水 質	1 pg-TEQ/L	日本工業規格K0312 に定める方法
(水底の底	以下	
質を除く。)		
水底の底質	150 pg-TEQ/	水底の底質中に含まれるダイオキシン類をソックスレー抽出し、高
	g以下	分解能ガスクロマトグラフ質量分析計により測定する方法
土壤	1,000 pg-TEQ	土壌中に含まれるダイオキシン類をソックスレー抽出し、高分解能
	/g以下	ガスクロマトグラフ質量分析計により測定する方法(ポリ塩化ジベ
		ンゾフラン等(ポリ塩化ジベンゾフラン及びポリ塩化ジベンゾーパ
		ラージオキシンをいう。以下同じ。)及びコプラナーポリ塩化ビフェ
		ニルをそれぞれ測定するものであって、かつ、当該ポリ塩化ジベン
		ゾフラン等を2種類以上のキャピラリーカラムを併用して測定する
		ものに限る。)
/	·	

備 老

- 1 基準値は、2,3,7,8-四塩化ジベンゾーパラージオキシンの毒性に換算した値とする。
- 2 大気及び水質(水底の底質を除く。)の基準値は、年間平均値とする。
- 3 土壌中に含まれるダイオキシン類をソックスレー抽出又は高圧流体抽出し、高分解能ガスクロマトグラフ質量分析計、ガスクロマトグラフ四重極形質量分析計又はガスクロマトグラフ三次元四重極形質量分析計により測定する方法(この表の土壌の欄に掲げる測定法を除く。以下「簡易測定方法」という。)により測定した値(以下「簡易測定値」という。)に2を乗じた値を上限、簡易測定値に0.5を乗じた値を下限とし、その範囲内の値をこの表の土壌の欄に掲げる測定方法により測定した値とみなす。
- 4 土壌にあっては、環境基準が達成されている場合であって、土壌中のダイオキシン類の量が250 pg-TEQ/g以上の場合(簡易測定方法により測定した場合にあっては、簡易測定値に2を乗じた値が250 pg-TEQ/g以上の場合)には、必要な調査を実施することとする。

5. 公共用水域等における農薬の水質評価指針について

(平成6年4月15日 環境庁水質保全局長通知 環水土86号)

種類	農薬名	評価指針値(mg/L)
	エトフェンプロックス	0.08 以下
	クロルピリホス	0.03 以下
	トリクロルホン (DEP)	0.03 以下
	ピリダフェンチオン	0.002以下
殺虫剤	イミダクロプリド	0.2 以下
	カルバリル(NAC)	0.05 以下
	ジクロフェンチオン(ECP)	0.006以下
	ブプロフェジン	0.01 以下
	マラチオン(マラソン)	0.01 以下
	イプロジオン	0.3 以下
	トルクロホスメチル	0.2 以下
	フルトラニル	0.2 以下
	ペンシクロン	0.04 以下
殺菌剤	メプロニル	0.1 以下
	エディフェンホス (EDDP)	0.006以下
	トリシクラゾール	0.1 以下
	フサライド	0.1 以下
	プロベナゾール	0.05 以下
	ブタミホス	0.004以下
	ベンスリド (SAP)	0.1 以下
	ペンディメタリン	0.1 以下
	エスプロカルブ	0.01 以下
除草剤		0.06 以下
	プレチラクロール	0.04 以下
	ブロモブチド	0.04 以下
	メフェナセット	0.009以下
	モリネート	0.005以下
	以上、27農薬	

平成25年度環境水質

神戸市 環境局 環境創造部 環境評価共生推進室

Tel.(078)322—6435 Fax.(078)322—6069 E-mail: kankyo sidou joho@office.city.kobe.lg.jp

神戸市 環境局 環境創造部 環境保全指導課 水・土壌環境係

Tel.(078)322—5309 Fax.(078)322—6068 E-mail: kankyo_sidou_suisitu@office.city.kobe.lg.jp

〒650-8570 神戸市中央区加納町6丁目5番1号

★神戸市公共用水域測定結果

http://www.city.kobe.lg.jp/life/recycle/environmental/earth/index.html

★神戸市水環境関係のホームページ

http://www.city.kobe.lg.jp/life/recycle/environmental/cleanup/index.html

平成 26 年 10 月発行 神戸市広報印刷物登録 平成 26 年度第 205 号 (広報印刷物規格A-6類)